Answer:
Equilibrium constant of the given reaction is 
Explanation:
....
....
The given reaction can be written as summation of the following reaction-


......................................................................................

Equilibrium constant of this reaction is given as-
![\frac{[NOBr]^{2}}{[N_{2}][O_{2}][Br_{2}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNOBr%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%5BBr_%7B2%7D%5D%7D)
![=(\frac{[NOBr]}{[NO][Br_{2}]^{\frac{1}{2}}})^{2}(\frac{[NO]^{2}}{[N_{2}][O_{2}]})](https://tex.z-dn.net/?f=%3D%28%5Cfrac%7B%5BNOBr%5D%7D%7B%5BNO%5D%5BBr_%7B2%7D%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%29%5E%7B2%7D%28%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BN_%7B2%7D%5D%5BO_%7B2%7D%5D%7D%29)


Answer:
Mass = 112 g
Explanation:
Given data:
Mass of CO₂ produced = 90.6 g
Mass of oxygen needed = ?
Solution:
Chemical equation:
C₃H₈ + 5O₂ → 3CO₂+ 4H₂O
Number of moles of CO₂:
Number of moles = 90.6 g/ 44 g/mol
Number of moles = 2.1 mol
Now we will compare the moles of CO₂ and oxygen:
CO₂ : O₂
3 : 5
2.1 : 5/3×2.1 = 3.5
Mass of oxygen needed:
Mass = number of moles × molar mass
Mass = 3.5 mol × 32 g/mol
Mass = 112 g
Answer:
If you want to separate black grapes from the mixture of black and green grapes, then you will simply pick black grapes using your hands from the mixture. In this way you are actually using handpicking separation method.
Explanation:
Answer:
filtration is the process of using a filter to remove solids from liquids or gasses.
Example:
an example of this is tea.
In earths surface or the bottom of the Ocean