Here we have to get the height of the column in meter, filled with liquid benzene which exerting pressure of 0.790 atm.
The height of the column will be 0.928 m.
We know the relation between pressure and height of a liquid placed in a column is: pressure (P) = Height (h) × density of the liquid (ρ) × gravitational constant (g).
Here the pressure (P) is 0.790 atm,
or [0.790 × (1.013 × 10⁶)] dyne/cm². [As 1 atm is equivalent to 1.013 × 10⁶ dyne/cm²]
Or, 8.002ₓ10⁵ dyne/cm².
density of benzene is given 0.879 g/cm³.
And gravitational constant (g) is 980 cm/sec².
On plugging the values we get:
8.002×10⁵ = h × 0.879 × 980
Or, h = 928.931 cm
Or, h = 9.28 m (As 1 m = 100 cm)
Thus the height will be 9.28 m.
The final temperature = 36 °C
<h3>Further explanation</h3>
The balanced combustion reaction for C₆H₆
2C₆H₆(l)+15O₂(g)⇒ 12CO₂(g)+6H₂O(l) +6542 kJ
MW C₆H₆ : 78.11 g/mol
mol C₆H₆ :

Heat released for 2 mol C₆H₆ =6542 kJ, so for 1 mol

Heat transferred to water :
Q=m.c.ΔT

Answer:-
0.229 L
Explanation:-
Molar mass of AgBr = 107.87 x 1 + 79.9 x 1
=187.77 grams mol-1
Mass of AgBr = 150 grams
Number of moles of AgBr = 150 grams / 187.77 gram mol-1
= 0.8 mol
The balanced chemical equation is
NaBr (aq) + AgNO3 (aq)--> AgBr(s) + NaNO3(aq)
From the equation we can see that
1 mol of AgBr is produced from 1 mol of AgNO3.
∴ 0.8 mol of AgBr is produced from 1 x 0.8 / 1 = 0.8 mol of AgNO3.
Strength of AgNO3 = 3.5 M
Volume of AgNO3 required = Number of moles / strength
= 0.8 moles / 3.5
=0.229 L
Balanced Eqn
2
C
2
H
6
+
7
O
2
=
4
C
O
2
+
6
H
2
O
By the Balanced eqn
60g ethane requires 7x32= 224g oxygen
here ethane is in excess.oxygen will be fully consumed
hence
300g oxygen will consume
60
⋅
300
224
=
80.36
g
ethane
leaving (270-80.36)= 189.64 g ethane.
By the Balanced eqn
60g ethane produces 4x44 g CO2
hence amount of CO2 produced =
4
⋅
44
⋅
80.36
60
=
235.72
g
and its no. of moles will be
235.72
44
=5.36 where 44 is the molar mass of Carbon dioxide
hope this helps