((mass solute)/(mass solution)) * 100% =35%
mass CaCl2=0.35*352.5=123.4 g CaCl2
Barium is an element that is primarily used in fireworks because of its distinct green colour while on the other hand, lead is used in electrical industries due to its unique properties. The ions of these elements can simply be identified when its insoluble salts get precipitated by any process.
Empirical formula is the simplest ratio of components making up the compound. the molecular formula is the actual ratio of components making up the compound.
the empirical formula is CH₂. We can find the mass of CH₂ one empirical unit and have to then find the number of empirical units in the molecular formula.
Mass of one empirical unit - CH₂ - 12 g/mol x 1 + 1 g/mol x 2 = 12 = 14 g
Molar mass of the compound is - 252 .5 g/mol
number of empirical units = molar mass / mass of empirical unit
= 
= 18 units
Therefore molecular formula is - 18 times the empirical formula
molecular formula - CH₂ x 18 = C₁₈H₃₆
molecular formula is C₁₈H₃₆
moles Cu produced : 0.002
<h3>Further explanation</h3>
Concentration of copper sulfate (CuSO₄) : 0.319 g/dm³
MW CuSO₄ :

mol CuSO₄ /dm³ :

CuSO₄⇒Cu²⁺ + SO₄²⁻
mol Cu : mol CuSO₄ = 1 : 1 , so mol Cu²⁺=0.002
Answer:
Final temperature = 83.1 °C
Explanation:
Given data:
Mass of concrete = 25 g
Specific heat capacity = 0.210 cal/g. °C
Initial temperature = 25°C
Calories gain = 305 cal
Final temperature = ?
Solution:
Q = m. c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
305 cal = 25 g ×0.210 cal/g.°C × T2 - 25°C
305 cal = 5.25cal/°C × T2 - 25°C
305 cal / 5.25cal/°C = T2 - 25°C
58.1 °C = T2 - 25°C
T2 = 58.1 °C + 25°C
T2 = 83.1 °C