<span>553 ohms
The Capacitive reactance of a capacitor is dependent upon the frequency. The lower the frequency, the higher the reactance, the higher the frequency, the lower the reactance. The equation is
Xc = 1/(2*pi*f*C)
where
Xc = Reactance in ohms
pi = 3.1415926535.....
f = frequency in hertz.
C = capacitance in farads.
I'm assuming that the voltage and resistor mentioned in the question are for later parts that are not mentioned in this question. Reason is that they have no effect on the reactance, but would have an effect if a question about current draw is made in a later part. With that said, let's calculate the reactance.
The 120 rad/s frequency is better known as 60 Hz.
Substitute known values into the formula.
Xc = 1/(2*pi* 60 * 0.00000480)
Xc = 1/0.001809557
Xc = 552.6213302
Rounding to 3 significant figures gives 553 ohms.</span>
Density
is a value for mass, such as kg, divided by a value for volume, such as m3.
Density is a physical property of a substance that represents the mass of that
substance per unit volume. It is a property that can be used to describe a
substance.<span> </span><span>It has standard units of
kg/m^3 or g/mL.
So, the best answer is option C.</span>
Answer:
1.90×10²⁰ Electrons
Explanation:
From the question,
Q = It.................... Equation 1
Where Q = charge flowing through the wire, I = current, t = time
Given: I = 4.35 A, t = 7.00 s
Substitute these values into equation 1
Q = 4.35(7.00)
Q = 30.45 C.
But,
1 electron contains 1.6×10⁻¹⁹ C
therefore,
30.45 C = 30.45/1.6×10⁻¹⁹ electrons
= 1.90×10²⁰ Electrons
Answer:
Positively charged nuclei are packed in an organized pattern, and the negatively charged valence electrons flow freely.
Explanation:
Answer: 44m/s
Explanation:
Speed of Car A travelling left = 22m/s
Speed of Car B travelling right = 22m/s
Now recall that relative speed of objects moving in opposite directions is equal to the sum of each speed
Hence, Relative speed = (Speed of Car A + Speed of Car B)
= (22m/s + 22m/s)
= 44m/s