Answer:
Approximate height of the building is 23213 meters.
Explanation:
Let the height of the building be represented by h.
0.02 radians = 0.02 × 
= 0.02 x (180/
)
0.02 radians = 1.146°
10.5 km = 10500 m
Applying the trigonometric function, we have;
Tan θ = 
So that,
Tan 1.146° = 
⇒ h = Tan 1.146° x 10500
= 2.21074 x 10500
= 23212.77
h = 23213 m
The approximate height of the building is 23213 m.
Answer:
IV: speed of the fan
DV: time of cup ascent
Explanation:
Kinetic energy is the energy of mass in motion. The kinetic energy of an object is the energy it has because of its motion. As the speed of the fan increases, so does the kinetic energy, then it transfers energy to the Cup ascent.
Answer:
(a) Melting point is 136.8°C
(b) Melting point is 278.24°F
Boiling point is 832.28°F
(c) Melting point is 409.8K
Boiling point is 717.6K
Explanation:
(a) 586.1°F = 5/9(586.1 - 32)°C = 307.8°C
Melting point = 444.6°C - 307.8°C = 136.8°C
(b) Melting point = 136.8°C = (9/5×136.8) + 32 = 278.24°F
Boiling point = 444.6°C = (9/5×444.6) + 32 = 832.28°F
(c) Melting point = 136.8°C = 136.8 + 273 = 409.8K
Boiling point = 444.6°C = 444.6 + 273 = 717.6K
Answer:
E. downward and constant
Explanation:
Freefall is a special case of motion with constant acceleration because the acceleration due to gravity is always constant and downward. This is true even when an object is thrown upward or has zero velocity.
For example, when a ball is thrown up in the air, the ball's velocity is initially upward. Since gravity pulls the object toward the earth with a constant acceleration ggg, the magnitude of velocity decreases as the ball approaches maximum height. At the highest point in its trajectory, the ball has zero velocity, and the magnitude of velocity increases again as the ball falls back toward the earth.