It’s doesn’t change meaning it’s 0
Answer:
The heat transferred through the wall that day is 13728 BTUs
Explanation:
Here, we have the area of the wall given as
Area of wall = 2 × Length × Height + 2 × Width × Height
Length = 15 feet
Width = 11 Feet and
Height = 9 feet
Therefore, the area = 2×15×9 + 2×11×9 = 468 ft²
Temperature difference is given by
Average outside temperature - Wall temperature = 40 - 18 = 22 °F
Therefore the heat transferred through the wall that day (24 hours) at 18 sq.ft. hr/BTU is given by;
468 × 22 × 24/18 = 13728 = 13728 BTUs.
Because water is a very very very very very unusual substance ... It's
the only known substance whose solid form is less dense than its liquid
form near the same temperature.
In other words, water is the only known substance for which a solid lump
of it floats in a liquid glass of it.
If that were not true ... if the behavior of the density of water around its
freezing temperature were the same as the density of all other known
substances ... then life on Earth would be impossible.
Think about that for a while ! Ya gotta admire whoever it was that designed water !
Both
in the domestic and international guidelines tell that when two power-driven
vessels are crossing so as to contain risk of collision, the vessel which has
the other on her starboard side (the give-way vessel) must keep out of the way.
If
you are the give-way vessel, it is your responsibility to avoid a collision. Normally,
this means you must change speed or direction to cross behind the other vessel
which is the stand-on vessel.
At
evening, when you perceive a red light crossing right-to-left in front of you,
you need to change your course. But if you perceive a green light crossing from
left-to-right, you are the stand-on vessel, and should maintain course and
speed.
The leading situations of collision risk are meeting head-on, overtaking, and crossing. When one of two vessels is to keep out of the way (give-way vessel), the other, the stand-on vessel, must uphold course and speed.