Answer:
= 1.132 A
Explanation:
Given that:
A 120-V rms voltage at 60.0 Hz which applied across an inductor, capacitor and a 100- resistor in series.
If the maximum value of the current in this circuit
= 1.60 A
what is the rms value of the current in this circuit i.e the
= ????
The relation between
and
can be expressed by the formula:
= 
1.60 = 1.414 * 
= 
= 1.132 A
Thus, the value of the current this circuit = 1.132 A
There are times where the mass is less than the force of gravity or the gravitational pull. The gravitational pull will overpower the mass of the object, which is why you only notice the force of gravity and not the mass
Answer:
The possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
Explanation:
Given that,
The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz.
The speed of sound in air is 343 m/s.
To find,
The wavelength range for the corresponding frequency.
Solution,
The speed of sound is given by the following relation as :

Wavelength for f = 45 Hz is,


Wavelength for f = 375 Hz is,


So, the possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
It could never actually happen like this, but the question is
looking for you to 'conserve' the momentum.
Momentum of a moving object is (mass) x (velocity).
Like velocity, momentum has a direction.
Momentum is one of those things that's 'conserved'.
That means that momentum can't appear out of nowhere, and
it doesn't disappear. The total after the collision is the same as
the total was before the collision.
Momentum of the skinny player:
(70 kg) x (3 m/s north) = 210 kg-m/s north.
Momentum of the heavy player:
(80 kg) x (1.5 m/s south) = 120 kg-m/s south .
Total momentum before the collision is
(210 kg-m/s north) + (120 kg-m/s south)
= 90 kg-m/s north .
It has to be the same after the collision.
(mass) x (velocity) = 90 kg-m/s north.
The mass after the collision is 150 kg, because they get
tangled up and stuck together, and they move together.
(150 kg) x (velocity) = 90 kg-m/s north .
Divide each side
by 150 kg : velocity = (90 kg-m/s north) / (150 kg)
= (90/150) (kg-m/s / kg north)
= 0.6 m/s north .