Answer:
- Work done is maximum when the movement of object is in line and direction of force.
OR
- Work done is maximum, when displacement takes place along the direction of force.
- Work done is given by the equation
W = F.S
<em> W = F. S cos Θ</em>
<em>When cos Θ = 0° ; cos 0 = 1</em>
Answer:
Work done, W = 1786.17J
Explanation:
The question says "A 75.0-kg painter climbs a 2.75-m ladder that is leaning against a vertical wall. The ladder makes an angle of 30.0 ° with the wall. How much work (in Joules) does gravity do on the painter? "
Mass of a painter, m = 75 kg
He climbs 2.75-m ladder that is leaning against a vertical wall.
The ladder makes an angle of 30 degrees with the wall.
We need to find the work done by the gravity on the painter.
The angle between the weight of the painter and the displacement is :
θ = 180 - 30
= 150°
The work done by the gravity is given by :

Hence, the required work done is 1786.17 J.
Answer:
man will move in opposite direction with speed

Explanation:
As we know that man is lying on the friction-less surface
so here net force along the surface is zero
so if we take man + stone as a system then net change in momentum of this system will become zero
so here we have


here we have



Answer:
d. 50 C
Explanation:
In this problem, we have to add 800 ml of water at 20 Celsius to 800 ml of water at 80 Celsius.
According to the 2nd law of thermodynamics, heat transfers from hot to cold temperature.
The quantity of both the different waters is equal so this makes it very easy. All we have to do is find the mean of both the temperatures:
Final temperature = (20 C + 80 C)/2
= 50 Celsius