Molarity can be used to calculate the volume of solvent or the amount of solute. The relationship between two solutions with the same amount of moles of solute can be represented by the formula c1V1 = c2V2, where c is concentration and V is volume.
The equilibrium constant for the reaction is 0.00662
Explanation:
The balanced chemical equation is :
2NO2(g)⇌2NO(g)+O2(g
At t=t 1-2x ⇔ 2x + x moles
The ideal gas law equation will be used here
PV=nRT
here n=
=
= density
P =
density is 0.525g/L, temperature= 608.15 K, P = 0.750 atm
putting the values in reaction
0.75 = 
M = 34.61
to calculate the Kc
Kc=![\frac{ [NO] [O2]}{NO2}](https://tex.z-dn.net/?f=%5Cfrac%7B%20%5BNO%5D%20%5BO2%5D%7D%7BNO2%7D)
x M NO2 +
M NO+
M O2
Putting the values as molecular weight of NO2, NO,O2

34.61= 
x= 0.33
Kc= 
putting the values in the above equation
Kc = 0.00662
Answer:
d.) It is a binary molecular compound.
Explanation:
The compound in question has a formula
. The compound is not acidic in nature and the element 'M' is not a metal. This shows that the compound does not contain any metal. Based on the definition of a binary molecular compound as a compound comprising elements that are not metals. Therefore, the compound is obviously a binary molecular compound.
Answer:
All answers attached in the pictures above.
Answer : The concentration of NaOH is, 0.336 M
Explanation:
To calculate the concentration of base, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:


Thus, the concentration of NaOH is, 0.336 M