Given Information:
Resistance = R = 14 Ω
Inductance = L = 2.3 H
voltage = V = 100 V
time = t = 0.13 s
Required Information:
(a) energy is being stored in the magnetic field
(b) thermal energy is appearing in the resistance
(c) energy is being delivered by the battery?
Answer:
(a) energy is being stored in the magnetic field ≈ 219 watts
(b) thermal energy is appearing in the resistance ≈ 267 watts
(c) energy is being delivered by the battery ≈ 481 watts
Explanation:
The energy stored in the inductor is given by

The rate at which the energy is being stored in the inductor is given by

The current through the RL circuit is given by

Where τ is the the time constant and is given by


Therefore, eq. 1 becomes

At t = 0.13 seconds

(b) thermal energy is appearing in the resistance
The thermal energy is given by

(c) energy is being delivered by the battery?
The energy delivered by battery is

The velocity of the ball is 12.5 m/s
Explanation:
The velocity of the ball is given by the ratio between the distance covered by the ball and the time taken:

First, we calculate the distance covered. We know that the radius of the circle is
r = 0.450 m
And the length of the circumference is

The ball makes 25.0 revolutions, so a total distance of

In a time of
t = 9.37 s
So, its velocity is

Learn more about velocity here:
brainly.com/question/5248528
#LearnwithBrainly
No velocity will not be changed
Why?
According to Newtons 1st law the velocity of a moving object remains unchanged unless a external force affect that.