Autonomic, but I don’t know why! Research this if you can.
Answer:
it would be c.
Explanation:
starts at zero and isn't a straight shot up
Materials that conduct heat and electricity well in the solid state result when metals bond with metals. <span>This type of bonding is called metallic bonding. Metallic bonding is when positive ions (metals) are in a 'sea of negative electrons'. The electrons are delocalised, which means they can move around easily and carry charge, and this enables it to conduct electricity, even in a solid state.</span>
As you approach the surface of the sphere very closely, the electric field should resemble more and more the electric field from an infinite plane of charge.
If you check Gauss's law (recalling that the field in the conductor is zero) you will see that if the surface charge density is σ=Q/4πR2, then indeed the field at the surface is σ/ϵ0 as in the infinite charge of plane case.
Such a field is constant, the field lines are parallel and non-diverging, and the infinities associated with the field due to point charge do not arise.
Explanation:
Answer:
M2 = 278.06 kg
Explanation:
We calculate the weight of M1
W=m*g
Where
m: mass (kg)
g: acceleration due to gravity (m/s²)
W₁=288* 9.8= 2822.4 N
Look at the attached graphic
We calculate the x-y components of the weight :
W₁x= 2822.4*sin41° N =1851.66 N
W₁y= 2822.4 *cos41° N = 2130.09 N
We apply Newton's first law for the balance in M1:
Σ Fy=0
Fn-W₁y=0 , Fn: normal force
Fn=W₁y=2130.09N
Friction Force = Ff=μs *Fn = 0.41*2130.09 =873.34 N
Σ Fx=0
T- W₁x- Ff=0
T= 1851.66 + 873.34
T= 1851.66 + 873.34
T=2725 N
We apply Newton's first law for the balance in M2:
Σ Fy=0
T- W₂ =0
W₂ = T = 2725 N
W₂ = M2*g
M2 = W₂/g
M2 = 2725/9.8
M2 = 278.06 kg