Hubble noticed that the galaxies were moving away from us, which meant the universe was expanding.
This is why constellations change over time. In some years, the Big Dipper won't actually look like a dipper anymore.
Answer:
(a) A = 0.0800 m, λ = 20.9 m, f = 11.9 Hz
(b) 250 m/s
(c) 1250 N
(d) Positive x-direction
(e) 6.00 m/s
(f) 0.0365 m
Explanation:
(a) The standard form of the wave is:
y = A cos ((2πf) t ± (2π/λ) x)
where A is the amplitude, f is the frequency, and λ is the wavelength.
If the x term has a positive coefficient, the wave moves to the left.
If the x term has a negative coefficient, the wave moves to the right.
Therefore:
A = 0.0800 m
2π/λ = 0.300 m⁻¹
λ = 20.9 m
2πf = 75.0 rad/s
f = 11.9 Hz
(b) Velocity is wavelength times frequency.
v = λf
v = (20.9 m) (11.9 Hz)
v = 250 m/s
(c) The tension is:
T = v²ρ
where ρ is the mass per unit length.
T = (250 m/s)² (0.0200 kg/m)
T = 1250 N
(d) The x term has a negative coefficient, so the wave moves to the right (positive x-direction).
(e) The maximum transverse speed is Aω.
(0.0800 m) (75.0 rad/s)
6.00 m/s
(f) Plug in the values and find y.
y = (0.0800 m) cos((75.0 rad/s) (2.00 s) − (0.300 m⁻¹) (1.00 m))
y = 0.0365 m
The acceleration formula goes like this: a= (vf-vi)/t so it would be (13-4)/3 Thus the answer is 3m/s^2
Answer:
velocity changes over time.