Answer:
T = 17649.03 N = 17.65 KN
Explanation:
The tension in the cable must be equal to the apparent weight of the passenger. For upward acceleration:

where,
T = Tension in cable = ?
= Apparent weight
m = mass = 1603 kg
g = acceleration due to gravity = 9.81 m/s²
a = acceleration of elevator = 1.2 m/s²
Therefore,

<u>T = 17649.03 N = 17.65 KN</u>
Given
Car 1
m1 = 1300 kg
v1 = 20 m/s
m2 = 900 kg
v2 = -15 m/s
(Negative sign shows that direction of car 2 is opposite to car 1)
Procedure
As per the conservation of linear momentum, "The total momentum of the system before the collision must be equal to the total momentum after the collision". And this applies to the perfectly inelastic collision as well. Then the expression is,

Thus, we can conclude that the speed and direction of the cars after the impact is 5.68 m/s towards the first car.
Answer:
Acceleration = 4 m/s²
Explanation:
Given the following data;
Force = 8 N
Mass = 2 kg
To find the acceleration of the block;
Newton's Second Law of Motion states that the acceleration of a physical object is directly proportional to the net force acting on the physical object and inversely proportional to its mass.
Mathematically, it is given by the formula;
Substituting into the formula, we have;
Acceleration = 4 m/s²
Newton's first law is sometimes known as the law of inertia. It is the law that states that an object at rest will stay at rest and an object in motion will stay in motion unless a force acts upon it. For example, if I was working with a wrench in space an it slipped, it would keep on going in one direction with a constant speed unless it hits something. Hope this helps!
C Camera. I think this because you can make timelapses with cameras which makes it easy to see.