1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inn [45]
3 years ago
8

List three conditions for current to flow in a circuit.

Physics
1 answer:
viktelen [127]3 years ago
7 0
Supply of electric charges (electrons) which are free to flow, some form of push to move the charges through the circuit and a pathway to carry the charges.
You might be interested in
420 hg = _____ cg help please
kondaur [170]
4200000 is your answer hope this helps
4 0
3 years ago
Read 2 more answers
The emf induced in a coil that is rotating in a magnetic field will be at a maximum at which moment?
adelina 88 [10]
TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.

This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.

To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:

e = -N•dI/dt; dI = ABcos(theta)

where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.

Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.

Hope this helps!
6 0
4 years ago
Speedy Sue, driving at 34.0 m/s, enters a one-lane tunnel. She then observes a slow-moving van 160 m ahead traveling at 5.20 m/s
Zielflug [23.3K]

Answer:

there will be collision

Explanation:

v_{s} =  speed of sue = 34 m/s

v_{v} = speed of van = 5.20 m/s

v_{sv} = speed of sue relative to van  = v_{s} - v_{v} = 34 - 5.20 = 28.8 m/s

d_{s} = stopping distance after brakes are applied

D = distance between sue and van = 160 m

v_{f} = final speed of sue = 0 m/s

a = acceleration = - 1.80 m/s²

Using the kinematics equation

v_{f}^{2} = v_{o}^{2} + 2 a d_{s}

0^{2} = 28.8^{2} + 2 (1.80) d_{s}

d_{s} = 230.4 m

Since  d_{s} < D

hence there will be collision

7 0
3 years ago
You set your stationary bike on a high 80-N friction-like resistive force and cycle for 30 min at a speed of 8.0 m/s . Your body
stellarik [79]

A) The change in internal chemical energy is 1.15\cdot 10^7 J

B) The time needed is 1 minute

Explanation:

First of all, we start by calculating the power output of you and the bike, given by:

P=Fv

where

F = 80 N is the force that must be applied in order to overcome friction and travel at constant speed

v = 8.0 m/s is the velocity

Substituting,

P=(80)(8.0)=640 W

The energy output is related to the power by the equation

P=\frac{E}{t}

where:

P = 640 W is the power output

E is the energy output

t = 30 min \cdot 60 = 1800 s is the time elapsed

Solving for E,

E=Pt=(640)(1800)=1.15\cdot 10^6 J

Since the body is 10% efficient at converting chemical energy into mechanical work (which is the output energy), this means that the change in internal chemical energy is given by

\Delta E = \frac{E}{0.10}=\frac{1.15\cdot 10^6}{0.10}=1.15\cdot 10^7 J

B)

From the previous part, we found that in a time of

t = 30 min

the amount of internal chemical energy converted is

E=1.15\cdot 10^7 J

Here we want to find the time t' needed to convert an amount of chemical energy of

E'=3.8\cdot 10^5 J

So we can setup the following proportion:

\frac{t}{E}=\frac{t'}{E'}

And solving for t',

t'=\frac{E't}{E}=\frac{(3.8\cdot 10^5)(30)}{1.15\cdot 10^7}=1 min

Learn more about power and energy:

brainly.com/question/7956557

#LearnwithBrainly

3 0
3 years ago
All moving objects have momentum. __ momentum refers to the momentum of objects moving in a straight line and __ momentum refers
Inessa [10]

Answer: linear,angular

Explanation:

3 0
3 years ago
Other questions:
  • 3. A 75kg man sits at one end of a uniform seesaw pivoted at its center, and his 24kg son sits at the
    11·1 answer
  • A very powerful vacuum cleaner which has a hose of circular cross section can lift a brick of mass 12 kg when the hose is placed
    9·1 answer
  • 30 POINTS!
    8·2 answers
  • What distinguishes a tornado watch from a tornado warning?
    15·2 answers
  • Tom and Mary are riding a merry-go-round. Tom is on a horse about half way between the center and the outer rim, and Mary is on
    7·1 answer
  • If your weight is 588N on the earth, how far should you go from the centre of the earth so that your weight will be 300N? The ra
    15·1 answer
  • A π meson of rest energy 139.6 MeV moving at a speed of 0.921c collides with and sticks to a proton of rest energy 938.3 MeV tha
    7·1 answer
  • a wire is carrying a 2.45 A current. at what distance from the wire is the magnetic field 1.00x10^-6t
    6·1 answer
  • A runner wants to run 12.0 km . Her running pace is 8.2 mi/hr . How many minutes must she run? Express your answer using two sig
    13·1 answer
  • A transformer with X turns in primary coil and Y turns in secondary coil is used to change the magnitude of voltage to 240 V. Ca
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!