Answer:
230.4 N
Explanation:
From the question given above, the following data were obtained:
Charge (q) of each protons = 1.6×10¯¹⁹ C
Distance apart (r) = 1×10¯¹⁵ m
Force (F) =?
NOTE: Electric constant (K) = 9×10⁹ Nm²/C²
The force exerted can be obtained as follow:
F = Kq₁q₂ / r²
F = 9×10⁹ × (1.6×10¯¹⁹)² / (1×10¯¹⁵)²
F = 9×10⁹ × 2.56×10¯³⁸ / 1×10¯³⁰
F = 2.304×10¯²⁸ / 1×10¯³⁰
F = 230.4 N
Therefore, the force exerted is 230.4 N
Answer:
<h2>64.4 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question
mass = 9.2 kg
acceleration = 7 m/s²
We have
force = 9.2 × 7 = 64.4
We have the final answer as
<h3>64.4 N</h3>
Hope this helps you
Answer:
66.375 x 10⁻⁶ C/m
Explanation:
Using Gauss's law which states that the net electric flux (∅) through a closed surface is the ratio of the enclosed charge (Q) to the permittivity (ε₀) of the medium. This can be represented as
;
∅ = Q / ε₀ -----------------(i)
Where;
∅ = 7.5 x 10⁵ Nm²/C
ε₀ = permittivity of free space (which is air, since it is enclosed in a bag) = 8.85 x 10⁻¹² Nm²/C²
Now, let's first get the charge (Q) by substituting the values above into equation (i) as follows;
7.5 x 10⁵ = Q / (8.85 x 10⁻¹²)
Solve for Q;
Q = 7.5 x 10⁵ x 8.85 x 10⁻¹²
Q = 66.375 x 10⁻⁷ C
Now, we can find the linear charge density (L) which is the ratio of the charge(Q) to the length (l) of the rod. i.e
L = Q / l ----------------------(ii)
Where;
Q = 66.375 x 10⁻⁷ C
l = length of the rod = 10.0cm = 0.1m
Substitute these values into equation (ii) as follows;
L = 66.375 x 10⁻⁷C / 0.1m
L = 66.375 x 10⁻⁶ C/m
Therefore, the linear charge density (charge per unit length) on the rod is 66.375 x 10⁻⁶ C/m.
'Ampere' is the unit of current. That's the rate at which
electrons travel in the circuit ... the number of electrons
every second. If you wanted the actual amount or number
of electrons, you'd need to know the length of time too.
It doesn't matter whether we're talking about a parallel or
series circuit.