The choices are:
a. Normal Force
b. Gravity Force
c. Applied Force
d. Friction Force
e. Tension Force
f. Air Resistance Force
Answer:
The answer is letter e, Tension Force.
Explanation:
Force refers to the "push" and "pull" of an object, provided that the object has mass. This results to acceleration or a change in velocity. There are many types of forces such as <em>Normal Force, Gravity Force, Applied Force, Friction Force, Tension Force and Air Resistance Force.</em>
The situation above is an example of a "tension force." This is considered the force that is being applied to an object by strings or ropes. This is a type force that allows the body to be pulled and not pushed, since ropes are not capable of it. In the situation above, the tension force of the rope is acting on the bag and this allows the bag to be pulled.
Thus, this explains the answer.
Answer:
(a) 
(b) P = 0.816 Watt
Explanation:
(a)
The power radiated from a black body is given by Stefan Boltzman Law:

where,
P = Energy Radiated per Second = ?
σ = stefan boltzman constant = 5.67 x 10⁻⁸ W/m².K⁴
T = Absolute Temperature
So the ratio of power at 250 K to the power at 2000 K is given as:

(b)
Now, for 90% radiator blackbody at 2000 K:

<u>P = 0.816 Watt</u>
To find a general equilibrium point for a spring based on the hook law, it is possible to start from the following premise:
Hook's law is given by:

Where,
k= Spring Constant
Change in Length
F = Force
When there is a Mass we have two force acting at the System:
W= mg
Where W is the force product of the weigth. Then the force net can be defined as,

But we have a system in equilibrium, so

We find the equilibrium for any location when

D,f,g,h,i,a,e,c,j. I’m sure that it
Explanation:
225=m (2.20m/s2 which give m=16kg I used newtons second law to fins the required average force