I think you can google this because I really don’t know the answer I’m so sorry
Answer:
The well is 7.1 meters deep.
Explanation:
The formula to use here is the distance in a uniformly accelerated motion:

where d stands for distance, t for time, a for acceleration, v0 and d0 for initial velocity and distance, respectively. Since the initial distance and velocity are both zero, we are left with the first term. The coin is in free fall and so it is accelerated by gravity:

The well is 7.1 meters deep.
Answer:
V = 3.54 m/s
Explanation:
Using the conservation of energy:

so:

where w is te weigh of kelly, h the distance that kelly decends, m is the mass of kelly and V the velocity in the lowest position.
So, the mass of kelly is:
m = 425N/9.8 = 43.36 Kg
and h is:
h = 1m-0.36m =0.64m
then, replacing values, we get:

Solving for v:
V = 3.54 m/s
The freezing point ..... :)
Complete question:
A 45-mH ideal inductor is connected in series with a 60-Ω resistor through an ideal 15-V DC power supply and an open switch. If the switch is closed at time t = 0 s, what is the current 7.0 ms later?
Answer:
The current in the circuit 7 ms later is 0.2499 A
Explanation:
Given;
Ideal inductor, L = 45-mH
Resistor, R = 60-Ω
Ideal voltage supply, V = 15-V
Initial current at t = 0 seconds:
I₀ = V/R
I₀ = 15/60 = 0.25 A
Time constant, is given as:
T = L/R
T = (45 x 10⁻³) / (60)
T = 7.5 x 10⁻⁴ s
Change in current with respect to time, is given as;

Current in the circuit after 7 ms later:
t = 7 ms = 7 x 10⁻³ s

Therefore, the current in the circuit 7 ms later is 0.2499 A