Answer:
1.56 mol H₂
Explanation:
Mg₃(Si₂O₅)₂(OH)₂
<em>There are 4 Si moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>. With that in mind we can <u>calculate how many Mg₃(Si₂O₅)₂(OH)₂ moles are there in the sample</u>, using the <em>given number of silicon moles</em>:
- 3.120 mol Si *
= 0.78 mol Mg₃(Si₂O₅)₂(OH)₂
Then we can <u>convert Mg₃(Si₂O₅)₂(OH)₂ moles into hydrogen moles</u>, keeping in mind that <em>there are 2 hydrogen moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>:
- 0.78 mol Mg₃(Si₂O₅)₂(OH)₂ * 2 = 1.56 mol H₂
Different isotopes of the same element emit light at slightly different wavelengths, the minimum number of slits is mathematically given as
N=1820slits
<h3>What minimum number of slits is required to resolve these two wavelengths in second-order?</h3>
Generally, the equation for the wave is mathematically given as

Where the chromatic resolving power (R) is defined by

R = nN,
Therefore


and


In conclusion, the minimum number of slits is required to resolve these two wavelengths in second-order

Therefore

N=1820slits
Read more about slits
brainly.com/question/24305019
#SPJ1
<h3>
Answer:</h3>
1379.4 Joules
<h3>
Explanation:</h3>
- The quantity of heat is calculated multiplying the mass of a substance by heat capacity and the change in temperature.
Therefore;
Quantity of heat = Mass × specific heat capacity × Change in temperature
Q = mcΔT
In this case;
The substance dissolved in water gained heat while water lost heat energy.
Thus, Heat gained by the substance = heat lost by water
Heat associated with the water
Mass of water = 75 g
Change in temperature = 4.4°C
Specific heat capacity = 4.18 J/g·⁰C
Heat = mcΔT
= 75 g × 4.18 J/g·⁰C × 4.4 °C
=1379.4 Joules
A displacement reaction Would occur in this situation
1 mole of carbon dioxide contains a mass of 44 g, out of which 12 g are carbon.
Hence, in this case the mass of carbon in 8.46 g of CO2:
(12/44) × 8.46 = 2.3073 g
1 mole of water contains 18 g, out of which 2 g is hydrogen;
Therefore, 2.6 g of water contains;
(2/18) × 2.6 = 0.2889 g of hydrogen.
Therefore, with the amount of carbon and hydrogen from the hydrocarbon we can calculate the empirical formula.
We first calculate the number of moles of each,
Carbon = 2.3073/12 = 0.1923 moles
Hydrogen = 0.2889/1 = 0.2889 moles
Then, we calculate the ratio of Carbon to hydrogen by dividing with the smallest number value;
Carbon : Hydrogen
0.1923/0.1923 : 0.2889/0.1923
1 : 1.5
(1 : 1.5) 2
= 2 : 3
Hence, the empirical formula of the hydrocarbon is C2H3