Answer:
The puck moves a vertical height of 2.6 cm before stopping
Explanation:
As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.
So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.
Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So
1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².
Substituting the kinetic energy of the puck for the potential energy of the spring, we have
1/2kx² = mgh
h = kx²/2mg
= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)
= 0.009971 Nm/0.38416 N
= 0.0259 m
= 2.59 cm
≅ 2.6 cm
So the puck moves a vertical height of 2.6 cm before stopping
Using the equation for period length for a pendulum, you get 32.829 meters.
A research question that would complete the third question you need that are related to the first 2 questions which are:
- “what type of masks help prevent fog on glasses when breathing?”
- “does a mask’s material affect the level of fog on glasses as an effect of breathing?”
Would be: "Are there any available masks that could prevent fog on glasses that could be improved upon"?
This new research question would help you find out if there is an already existing mask that could be made better.
<h3>What is a Research Question?</h3>
This refers to "a question that a research project sets out to answer". and seeks to give answers to particular phenomena.
Hence, we can see that the new research question Would be: "Are there any available masks that could prevent fog on glasses that could be improved upon"?
This new research question would help you find out if there is an already existing mask that could be made better.
Read more about research questions here:
brainly.com/question/25257437
#SPJ1
Answer:
Explanation:
1) Force Friction = Normal Force * Coefficient of Friction
Force Friction = Mass * Gravity * Coefficient of Friction
2) F = ma
Force = mass * acceleration
Force Friction (from #1) = mass * acceleration
acceleration = Force Friction / Mass