T is in seconds (s)
<span>2pi is dimensionless </span>
<span>L is in meters (m) </span>
<span>g is in meters per second squared (m/s^2) </span>
<span>so you can write the equation for the period of the simple pendulum in its units... </span>
<span>s=sqrt(m/(m/s^2)) </span>
<span>simplify</span>
<span>s=sqrt(m*s^2*1/m) cancelling the m's </span>
<span>s=sqrt(s^2) </span>
<span>s=s </span>
<span>therefore the dimensions on the left side of the equation are equal to the dimensions on the right side of the equation.</span>
Gravitational force depends on inverse square law. That is, gravitational force is inversely proportional to square of distance between asteroids.
As distance between them decreases, gravitational force increases. Hence A is correct.
Answer:
power =( 890 N x 12 m ) / 22 s=
= 485 Watts
Explanation:
Answer:
The net change in the internal energy of the gas in the piston is -343J
Explanation:
Because heat and workdone are the only means of energy transfer between the system and the surrounding, change in internal energy is given by;
∆E = q + w
q = heat transfer
w = workdone
Because heat is lost by the system, the heat transfer is negative
q = -413J
Because work is done on the system, workdone is positive
w = +70J
∆E = -413J + 70J
∆E = -343J
Answer:
An object on the moon would weigh the LEAST among these. So correct answer is B.
Explanation:
- Weight of an object on any place is given by:
W = Mass * Acceleration due to gravity(g)
- It means when masses of different objects those are in different places are same, the weight of those objects depends upon the 'g' of that particular place.
- As we know, acceleration due to gravity on surface of moon (g') is 6 times weaker than the acceleration on surface of earth (g), which is due to the large M/R^2 of the earth than the moon.
i.e. g' = g/6 so W' = W/6
- And in the space between the two, the object is weightless.