Answer:
My answer is when the ball is going it experience kinetic energy which is the energy of a moving object while when the ball has stopped then it will have potential energy which means it's at rest so for the ball not to experience friction then there is a gain in kinetic energy and decrease in potential energy.
Answer:
Explanation:
a )
momentum of baseball before collision
mass x velocity
= .145 x 30.5
= 4.4225 kg m /s
momentum of brick after collision
= 5.75 x 1.1
= 6.325 kg m/s
Applying conservation of momentum
4.4225 + 0 = .145 x v + 6.325 , v is velocity of baseball after collision.
v = - 13.12 m / s
b )
kinetic energy of baseball before collision = 1/2 mv²
= .5 x .145 x 30.5²
= 67.44 J
Total kinetic energy before collision = 67.44 J
c )
kinetic energy of baseball after collision = 1/2 x .145 x 13.12²
= 12.48 J .
kinetic energy of brick after collision
= .5 x 5.75 x 1.1²
= 3.48 J
Total kinetic energy after collision
= 15.96 J
Answer:2m/s²
Explanation: Well F=MA so sice F=4N and M=2kg let's plug in the values
4N=2KG*A
A=4N/2KG
A=2m/s²
A glass pipe system has a very corrosive liquid flowing in it (think hydrofluoric acid, say). The liquid will destroy flow meters, but you need to know the flow rate. One way of measuring the flow rate is to add a fluorescent dye to the liquid at a known concentration, and then downstream activate the dye by UV light and then measure the dye concentration by emitted light. If the dye is added at 1.00 g/s, and the dye concentration downstream is 0.050% by mass, what is the unknown flow rate in kg/h
glass