1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nana76 [90]
3 years ago
11

An electron and a 0.033 0-kg bullet each have a velocity of magnitude 495 m/s, accurate to within 0.010 0%. Within what lower li

mit could we determine the position of each object along the direction of the velocity
Physics
1 answer:
lara31 [8.8K]3 years ago
7 0

Answer:

1.170*10^-3 m

3.23*10^-32 m

Explanation:

To solve this, we apply Heisenberg's uncertainty principle.

the principle states that, "if we know everything about where a particle is located, then we know nothing about its momentum, and vice versa." it also can be interpreted as "if the uncertainty of the position is small, then the uncertainty of the momentum is large, and vice versa"

Δp * Δx = h/4π

m(e).Δv * Δx = h/4π

If we make Δx the subject of formula, by rearranging, we have

Δx = h / 4π * m(e).Δv

on substituting the values, we have

for the electron

Δx = (6.63*10^-34) / 4 * 3.142 * 9.11*10^-31 * 4.95*10^-2

Δx = 6.63*10^-34 / 5.67*10^-31

Δx = 1.170*10^-3 m

for the bullet

Δx = (6.63*10^-34) / 4 * 3.142 * 0.033*10^-31 * 4.95*10^-2

Δx = 6.63*10^-34 / 0.021

Δx = 3.23*10^-32 m

therefore, we can say that the lower limits are 1.170*10^-3 m for the electron and 3.23*10^-32 for the bullet

You might be interested in
The corpus callosum is comprised of more than 200 million axons that connect the hemispheres of the brain. Please select the bes
mamaluj [8]

Hello, love! The answer is True, or T, on Edge2020.

Hope this helped!

~ V.

8 0
2 years ago
Read 2 more answers
A train pulls away from a station with a constant acceleration of 0.42 m/s2. A passenger arrives at a point next to the track 6.
Rina8888 [55]

Answer:

2.69 m/s

Explanation:

Hi!

First lets find the position of the train as a function of time as seen by the passenger when he arrives to the train station. For this state, the train is at a position x0 given by:

x0 = (1/2)(0.42m/s^2)*(6.4s)^2 = 8.6016 m

So, the position as a function of time is:

xT(t)=(1/2)(0.42m/s^2)t^2 + x0 = (1/2)(0.42m/s^2)t^2 + 8.6016 m

Now, if the passanger is moving at a constant velocity of V, his position as a fucntion of time is given by:

xP(t)=V*t

In order for the passenger to catch the train

xP(t)=xT(t)

(1/2)(0.42m/s^2)t^2 + 8.6016 m = V*t

To solve this equation for t we make use of the quadratic formula, which has real solutions whenever its determinat is grater than zero:

0≤ b^2-4*a*c = V^2 - 4 * ((1/2)(0.42m/s^2)) * 8.6016 m =V^2 - 7.22534(m/s)^2

This equation give us the minimum velocity the passenger must have in order to catch the train:

V^2 - 7.22534(m/s)^2 = 0

V^2 = 7.22534(m/s)^2

V = 2.6879 m/s

4 0
3 years ago
A wave of wavelength 0.3 m travels 900 m in 3.0 s. Calculate its frequency.
Crank

Answer: 1000 Hz

Explanation:

You can calculate frequency by dividing velocity by wavelength

Frequency = velocity/wavelength

Find velocity first.

900 m/3 s = 300 m/s

Plug values in to find frequency.

F = (300 m/s)/0.3 m

F = 1000 Hz

8 0
2 years ago
In transistor emitter current is equal to which current?
Paladinen [302]
In transistor,
Emitter current is equal to the sum of base current and collector current.
Thanks!
8 0
2 years ago
Science If you want to find the energy quantum of light, you multiply the frequency of the radiation (v) by "h". What is "h"?
weqwewe [10]

Answer:

"h" signifies Planck's constant

Explanation:

In the equation energy E = h X v

The "h" there signifies Planck's constant

Planck's constant is a value, that shows the rate at which the energy of a photon increases/decreases, as the frequency of its electromagnetic wave changes.

It was named after Max Planck who discovered this unique relationship between the energy of a light wave and its frequency.

Planck's constant, "h" is usually expressed in Joules second

Planck's constant = 6.62607015 \times 10^{-34}  J.s

7 0
2 years ago
Other questions:
  • Which factors are most significant in describing the climate of a region?
    8·1 answer
  • The magnetic flux that passes through one turn of a 18-turn coil of wire changes to 2.67 from 8.19 Wb in a time of 0.0386 s. The
    7·1 answer
  • the useful power out of an electric motor is 20w and the total power into the motor is 80w calculate the percentage efficiency o
    15·1 answer
  • A mouse jumps horizontally from a box of height 0.25m.  If the mouse jumps with a speed of 2.1 m/s, how far from the box does th
    10·2 answers
  • Un cañón de electrones dispara electrones (q = -e, me = 9.1 × 10 -31 kg) hacia una placa metálica que está a 4.0 mm de distancia
    7·1 answer
  • Pls help me I don’t get it :(
    8·1 answer
  • Please Help <br><br> Conservation of energy
    6·1 answer
  • 8. What are the two types of mechanical waves?
    14·1 answer
  • A sample contains 16 g of a radioactive isotope. how much radioactive
    14·2 answers
  • How does light behaves when light passes through water?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!