The original options for this question were cleavage, luster and hardness. The answer would be cleavage.
In the first distillation this week, Hexane from the original solvent makes a larger contribution to the vapor pressure of the mixture.
In between hexane and toluene, the hexane will have more vapor pressure contribution in the solution. The boiling point of hexane is much lower than toluene. Therefore, it will evaporate easily at low temperatures and start exerting pressure on the solution.
Hence between hexane and toluene, because of more vapor pressure of hexane and lower boiling point, it will easily evaporate and exerts pressure.
Therefore, from the original solvent, hexane makes a larger contribution to the vapor pressure of the mixture.
To learn more about vapor pressure and hexane, visit: brainly.com/question/28206662
#SPJ4
Answer:
Ammonia is limiting reactant
Amount of oxygen left = 0.035 mol
Explanation:
Masa of ammonia = 2.00 g
Mass of oxygen = 4.00 g
Which is limiting reactant = ?
Balance chemical equation:
4NH₃ + 3O₂ → 2N₂ + 6H₂O
Number of moles of ammonia:
Number of moles = mass/molar mass
Number of moles = 2.00 g/ 17 g/mol
Number of moles = 0.12 mol
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 4.00 g/ 32 g/mol
Number of moles = 0.125 mol
Now we will compare the moles of ammonia and oxygen with water and nitrogen.
NH₃ : N₂
4 : 2
0.12 : 2/4×0.12 = 0.06
NH₃ : H₂O
4 : 6
0.12 : 6/4×0.12 = 0.18
O₂ : N₂
3 : 2
0.125 : 2/3×0.125 = 0.08
O₂ : H₂O
3 : 6
0.125 : 6/3×0.125 = 0.25
The number of moles of water and nitrogen formed by ammonia are less thus ammonia will be limiting reactant.
Amount of oxygen left:
NH₃ : O₂
4 : 3
0.12 : 3/4×0.12= 0.09
Amount of oxygen react = 0.09 mol
Amount of oxygen left = 0.125 - 0.09 = 0.035 mol
![pH=-\log_{10} [H_3O^+] \Rightarrow [H_3O^+]=10^{-pH} \\ \\ pH=2.8 \\ \ [H_3O^+]=10^{-2.8} \approx 1.58 \times 10^{-3}](https://tex.z-dn.net/?f=pH%3D-%5Clog_%7B10%7D%20%5BH_3O%5E%2B%5D%20%5CRightarrow%20%5BH_3O%5E%2B%5D%3D10%5E%7B-pH%7D%20%5C%5C%20%5C%5C%0ApH%3D2.8%20%5C%5C%0A%5C%20%5BH_3O%5E%2B%5D%3D10%5E%7B-2.8%7D%20%5Capprox%201.58%20%5Ctimes%2010%5E%7B-3%7D)
The [H₃O⁺] of the solution is approximately 1.58 × 10⁻³ M.