Before you even look at the questions, look over the graph, so you know what kind of information is there.
The x-axis is "time". OK. You know that as the graph moves from left to right, it shows what's happening as time goes on.
The y-axis is "speed" of something. OK. When the graph is high, the thing is moving fast. When the graph is low, the thing is moving slow. When the graph slopes up, the thing is gaining speed. When the graph slopes down, the thing is slowing down. When the graph is flat, the speed isn't changing, so the thing is moving at a constant speed.
NOW you can look at the questions.
OMG ! It's only ONE question: What's happening from 'c' to 'd' ? Well I don't know. Perhaps we can figure it out if we LOOK AT THE GRAPH !
-- Between c and d, the graph is flat. The speed is not changing. It's the same speed at d as it was back at c .
What speed is it ?
-- Look back at the y-axis. The speed at the height of c and d is 'zero' .
-- The 2nd and 4th choices are both correct. From c to d, <em>the speed is constant</em>. The constant speed is zero. <em>The car is not moving</em>.
Answer:
c. find the slope of the velocity time graph
and closing
.
The heart has 4 valves. They are what makes the lub-dub lub-dub sounds that can be heard from the chest.
The mitral valve is located between the left atrium and the left ventricle. It closes the left atrium to collect oxygenated blood from the lungs and opens to pass it on to the left ventricle.
The tricuspid valve is located between the right atrium and the right ventricle. It closes the right atrium to hold unoxygenated blood and opens to pass it on to the right ventricle ensuring a one way flow.
The aortic valve is located between the aorta and the left ventricle. It closes the left ventricle and opens to the aorta to pass on the oxygen-rich blood to the body.
The pulmonary valve is located between the pulmonary artery and the right ventricle. It closes off the right ventricle and opens to pass on unoxygenated blood to the lungs.
Answer:
Container A and C
Explanation:
ideal gas equation gives P=nRT/V
so at constant Temperature and pressure, P=n/T
Container A and C after dividing number of moles and Volume, are found to be the same=0.0446
Answer: A
Explanation:
honestly, it sounded the best