Answer:
625 W
Explanation:
Applying
P = W/t.................... Equation 1
Where p = power, W = Work, t = time
But,
W = Force (F) × distance (d)
W = Fd........................ Equation 2
Substitute equation 2 into equation 1
P = Fd/t.................... Equation 3
From the question,
Given: F = 5000 N, d = 30 m, t = 4 munites = (4×60) seconds = 240 seconds
Substitute these values into equation 3
P = (5000×30)/240
P = 625 Watt
Answer:
A damped oscillation means an oscillation that fades away with time while Forced oscillations occur when an oscillating system is driven by a periodic force that is external to the oscillating system.
Explanation:
Damping is the reduction in amplitude (energy loss from the system) due to overcomings of external forces like friction or air resistance and other resistive forces. ... When a body oscillates by being influenced by an external periodic force, it is called forced oscillation.
<h2>
<em><u>Hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>helped</u></em><em><u> </u></em></h2>
<em><u>Welcome</u></em><em><u> </u></em>
Your question has been heard loud and clear.
Well it depends on the magnitude of charges. Generally , when both positive charges have the same magnitude , their equilibrium point is towards the centre joining the two charges. But if magnitude of one positive charge is higher than the other , then the equilibrium point will be towards the charge having lesser magnitude.
Now , a negative charge is placed in between the two positive charges. So , if both positive charges have same magnitude , they both pull the negative charge towards each other with an equal force. Thus the equilibrium point will be where the negative charge is placed because , both forces are equal , and opposite , so they cancel out each other at the point where the negative charge is placed. However if they are of different magnitudes , then the equilibrium point will be shifted towards the positive charge having less magnitude.
Thank you
Scott-Dannemiller, Koeninger, Briscoe, and Carter
Christopher-Briscoe, Dannemiller, and Koeninger
Dianne-Koeninger, Briscoe, and Carter
Kailee-Koeninger and Carter