Answer : The value of activation energy for this reaction is 108.318 kJ/mol
Explanation :
The Arrhenius equation is written as:

Taking logarithm on both the sides, we get:
............(1)
where,
k = rate constant = 
Ea = activation energy = ?
T = temperature = 435 K
R = gas constant = 8.314 J/K.mole
A = pre-exponential factor = 
Now we have to calculate the value of rate constant by putting the given values in equation 1, we get:


Therefore, the value of activation energy for this reaction is 108.318 kJ/mol
2 Al + 6 HCl → 2 AlCl₃ + 3 H₂ (single displacement)
Ca + Br₂ → CaBr₂ (synthesis)
4 NH₃ + 5 O₂ → 4 NO + 6 H₂O (combustion)
2 NaCl → 2 Na + Cl₂ (decomposition)
FeS + 2 HCl → FeCl₂ + H₂S (double displacement)
single displacement - is a chemical reaction of the following type: A + BC → AC + B
double displacement - is a chemical reaction of the following type: AB + CD → AC + BD
synthesis - the chemical product is obtained by combining in a synthesis the constituent elements
combustion - usually a exothermic reaction of a particular compound with oxygen
decomposition - degradation of a compound in simpler elements
Answer:
Correct answers: 2 and 3
Explanation:
1- correct would be: Isolation of ibuprofen is not dangerous, but it is necessary because only one enantiomer has effect on interaction with biologic <em>diana</em>
<em>2: Correct! This property of diastereomeric salts (differing solubilities) is really useful for the isolation of the original enantiomers</em>
<em>3: Correct! we can only observe their properties, like polirized light rotation or separation in an assimetric column for chromatography.</em>
4: correct would be: diastereomeric salts do not rotate light, they have lost the property of anantiomers that originated them
Answer:
d:more dense and falls
Explanation:
warm air Rises around cold air bc of its lower density. and when you have a lower density fluid or sum the lower density fluid rises and the higher density falls