Answer:
Choose the least electronegative atom other than H.
Explanation:
A Lewis structure consists of <em>terminal atoms</em> and one or more <em>central atoms</em>.
H can be <em>only a terminal atom</em> because it can form only one bond.
So the central atom must be either C or O.
The central atom is the less electronegative atom: C.
So, start the Lewis structure with a central C atom.
Then attach an O atom to get C-O.
Finally, attach the H atoms.
The condensed formula often gives you a clue where they go.
The formula CH₃OH implies that there are 3 H atoms on C and one on O.
The connectivity of the atoms is then as in the diagram below.
Answer:
Option B, aspirin’s ester group provides greater digestibility to aspirin
Explanation:
Aspirin ester group has three parts
- carboxylic acid functional group (R-COOH)
- ester functional group (R-O-CO-R')
- aromatic group (benzene ring)
Aspirin is a weak acid and hence it cannot dissolve in water readily. The reaction of Aspirin ester group with water is as follows -
aspirin
(acetylsalicylic acid) + water → salicylic acid + acetic acid
(ethanoic acid)
Aspirin passes through the stomach and remains unchanged until it reaches the intestine where it hydrolyses ester to form the active compound.
Answer:
Answer is explained in the explanation section below.
Explanation:
Note: This question is not complete and lacks necessary data to solve. However, I have found a similar question and I will be using its data to solve this question for the sake of understanding and concept.
Solution:
Equilibrium Reaction:
CaO(s) + H2O(g) -->Ca(OH)2(s)
We need to find the reaction quotient for this question:
Q =
Here, only the pressure of the gaseous reactant will be used and here H20 is the only reactant which is gaseous.
And we are given that, vapor pressure of water is = 0.106 mmHg
So,
Now, we need to convert it into atm
so, 1atm = 760 mmHg
0.106 mmHg = 0.106/760 atm
0.106 mmHg = 1.394 x
atm
Plugging in the values in the equation, we get:
Q =
Q = 
Q = 7173.60 
Answer:
Sc
:
4s
2
3d
1
Y
:
l
5s
2
4d
1
La
:
6s
2
5d
1
Ce
:
6s
2
4f
1
5d
1
Gd
:
6s
2
4f
7
5d
1
Lu
:
6s
2
4f
14
5d
1
Ac
:
7s
2
6d
1
Pa
:
7s
2
5f
2
6d
1
U
:
l
7s
2
5f
3
6d
1
Np
:
7s
2
5f
4
6d
1
Cm
:
7s
2
5f
7
6d
1
b. s2p3
he pnictogens:
N
l
:
2s
2
2p
3
P
l
:
3s
2
3p
3
As
:
4s
2
3d
10
4p
3
Sb
:
5s
2
4d
10
5p
3
Bi
:
6s
2
4f
14
5d
10
6p
3
Mc
:
7s
2
5f
14
6d
10
7p
3
c.The noble gases:
Ne
:
2s
2
2p
6
Ar
:
3s
2
3p
6
Kr
:
4s
2
3d
10
4p
6
Xe
:
5s
2
4d
10
5p
6
Rn
:
6s
2
4f
14
5d
10
6p
6
Og
:
7s
2
5f
14
6d
10
7p
6
Explanation: From the periodic tables we can drive elements with the electronic configuration
Sc
:
4s
2
3d
1
Y
:
l
5s
2
4d
1
La
:
6s
2
5d
1
Ce
:
6s
2
4f
1
5d
1
Gd
:
6s
2
4f
7
5d
1
Lu
:
6s
2
4f
14
5d
1
Ac
:
7s
2
6d
1
Pa
:
7s
2
5f
2
6d
1
U
:
l
7s
2
5f
3
6d
1
Np
:
7s
2
5f
4
6d
1
Cm
:
7s
2
5f
7
6d
1
b. s2p3
he pnictogens:
N
l
:
2s
2
2p
3
P
l
:
3s
2
3p
3
As
:
4s
2
3d
10
4p
3
Sb
:
5s
2
4d
10
5p
3
Bi
:
6s
2
4f
14
5d
10
6p
3
Mc
:
7s
2
5f
14
6d
10
7p
3
c.The noble gases:
Ne
:
2s
2
2p
6
Ar
:
3s
2
3p
6
Kr
:
4s
2
3d
10
4p
6
Xe
:
5s
2
4d
10
5p
6
Rn
:
6s
2
4f
14
5d
10
6p
6
Og
:
7s
2
5f
14
6d
10
7p
6