Answer:
C po
Explanation:
baka po pero pwd din ang B pero ok ang C
Answer:
Cu
Fe
Explanation:
Oxidizing agents:
Oxidizing agents oxidize the other elements and itself gets reduced.
Reducing agents:
Reducing agents reduced the other element are it self gets oxidized.
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
a) Cu²⁺ (aq) + Mg(s) + Cu(s) + Mg²⁺(aq)
Copper is oxidizing agent it accept two electrons from magnesium and oxidize the Mg and itself get reduced.
b) Fe₂O₃(s) + 3CO(g) → 2Fe(l) + 3CO₂(g)
In this reaction iron is oxidizing agent because iron itself reduced from +3 to 0.
Answer:
Here malonic acid acts as a competitive inhibitor of succinate dehydrogenase
Explanation:
Malonic acid structurally resembles succinic acid as a result the enzyme succinate dehydrogenase cannot distinguish between malonic acid and succinic acid.
That"s why malonic acid interact with succinate dehydrogenase thereby blocking the catalytic activity of the later.
As this mechanism is a type of competitive inhibition that"s why increasing the concentration of substrate succinic acid can reduce the inhibitory effect of malonic acid.
Answer:
Approximately 6.81 × 10⁵ Pa.
Assumption: carbon dioxide behaves like an ideal gas.
Explanation:
Look up the relative atomic mass of carbon and oxygen on a modern periodic table:
Calculate the molar mass of carbon dioxide
:
.
Find the number of moles of molecules in that
sample of
:
.
If carbon dioxide behaves like an ideal gas, it should satisfy the ideal gas equation when it is inside a container:
,
where
is the pressure inside the container.
is the volume of the container.
is the number of moles of particles (molecules, or atoms in case of noble gases) in the gas.
is the ideal gas constant.
is the absolute temperature of the gas.
Rearrange the equation to find an expression for
, the pressure inside the container.
.
Look up the ideal gas constant in the appropriate units.
.
Evaluate the expression for
:
.
Apply dimensional analysis to verify the unit of pressure.