The statement that identifies an oxidation-reduction reaction is a reaction in which oxidation numbers change (option C).
<h3>What is a redox reaction?</h3>
A redox or oxidation-reduction reaction is a chemical reaction in which some of the atoms have their oxidation number changed.
In a chemical reaction that involves oxidation and reduction, the oxidation number of the involved ions either decreases or increases.
Therefore, the statement that identifies an oxidation-reduction reaction is a reaction in which oxidation numbers change.
Learn more about redox reaction at: brainly.com/question/13293425
#SPJ1
Answer:
The correct option is;
c. the bone contains calcium salts, which are less reactive than the calcium ions found in the blood.
Explanation:
The most abundant metallic element found in the human body is calcium as it is present in the bones teeth and metabolism of the kidney
99 % of the calcium in the human body are found in the bones while the remaining 1 % circulates in the blood as ions
The bones of the vertebrate are made up of calcium salts such as calcium carbonate, calcium phosphate and calcium fluoride.
Answer:
The first one and the last one.
Explanation:
Carbon dioxide is generated by cellular respiration and released into the atmosphere.
Photosynthesis makes oxygen that plants can release into the atmosphere.
Answer:
The rate at which ammonia is being produced is 0.41 kg/sec.
Explanation:
Haber reaction
Volume of dinitrogen consumed in a second = 505 L
Temperature at which reaction is carried out,T= 172°C = 445.15 K
Pressure at which reaction is carried out, P = 0.88 atm
Let the moles of dinitrogen be n.
Using an Ideal gas equation:


According to reaction , 1 mol of ditnitrogen gas produces 2 moles of ammonia.
Then 12.1597 mol of dinitrogen will produce :
of ammonia
Mass of 24.3194 moles of ammonia =24.3194 mol × 17 g/mol
=413.43 g=0.41343 kg ≈ 0.41 kg
505 L of dinitrogen are consumed in 1 second to produce 0.41 kg of ammonia in 1 second. So the rate at which ammonia is being produced is 0.41 kg/sec.