Oxygen is balanced incorrectly.
The correct balanced equation: 2C6H6+15O2=12CO2+6H2O
Answer:
B. They are dimensionless ratios of the actual concentration or pressure divided by standard state concentration, which is 1 M for solutions and 1 bar for gases.
Explanation:
Activity of a substance is defined as the ratio of an effective concentration or an effective pressure to a standard state pressure or a standard state pressure. It is usually a unit less ratio.
Concentrations in an equilibrium constant are really dimensionless ratios of actual concentrations divided by standard state concentrations. Since standard states are 1 M for solutes, 1 bar for gases, and pure substances for solids and liquids, these are the units to be used.
Hence, activity is a fudge factor to ideal solutions that correct the true concentration. Activity of a gas and solute concentration is a ratio with no unit.
He ability to rust is a chemical property of iron. The metal silver does not rust, but eventually a darker substance called tarnish forms on its surface. The chemical properties of copper cause it to become a blue-green color when it is exposed to air
<span>We can use the heat
equation,
Q = mcΔT </span>
<span>Where Q is
the amount of energy transferred (J), m is the mass of the
substance (kg), c is the specific heat (J g</span>⁻¹ °C⁻<span>¹) and ΔT is the temperature
difference (°C).</span>
Density = mass / volume
The density of water = 0.997 g/mL
<span>Hence mass of 1.25 L (1250 mL) of water = 0.997 g/mL x 1250 mL</span>
<span> = 1246.25 g</span>
Specific heat capacity of water = 4.186 J<span>/ g °C.</span>
Let's assume that there is no heat loss to the surrounding and the final temperature is T.
By applying the equation,
5430 J = 1246.25 g x 4.186 J/ g °C x (T - 23) °C
(T - 23) °C = 5430 J / 1246.25 g x 4.186 J/ g °C
(T - 23) °C = 1.04 °C
T = 1.04 °C + 23 °C
T = 24.04 °C
Hence, the final temperature of the water is 24.04 °C.