Answer:
Each row is called a period. Each column is called a group or family.
Explanation:
Answer C is for kg and but it's .00134 for grams
Complete Question
The complete question is shown on the first uploaded image
Answer:
The concentration of
that should used originally is 
Explanation:
From the question we are told that
The necessary elementary step is

The time taken for sixth of 0.5 M of reactant to react 
The time available is 
The desired concentration to remain
Let Z be the reactant , Y be the first product and X the second product
Generally the elementary rate law is mathematically as

Where k is the rate constant ,
is the concentration of Z
From the elementary rate law we see that the reaction is second order (This because the concentration of the reactant is raised to power 2 )
For second order reaction

Where
is the initial concentration of Z which a value of 
From the question we are told that it take 9 hours for the concentration of the reactant to become


So


=> 
For 





Answer:
<h3>The answer is 0.42 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 8.11 g
volume = final volume of water - initial volume of water
volume = 44.72 - 25.26 = 19.46 mL
We have

We have the final answer as
<h3>0.42 g/mL</h3>
Hope this helps you
Mhm, it keeps the planets in place and circle around the Sun's gravitational pull, like how the Earth's small-like gravitational pull keeps the moon to circle around our planet, and as a perk it makes the 80% water that around this whole place to have high and low tides.
- Sincerely, Ouma