Answer: Fluorine
Explanation: It belongs in the same group as Bromine
Answer is: the combined ionic bond strength of CrCl₂ and intermolecular forces between water molecules.
When chromium chloride (CrCl₂) is dissolved in water, the temperature of the water increases, heat of the solution is endothermic.
Dissociation of chromium chloride in water: CrCl₂(aq) → Cr²⁺(aq) + 2Cl⁻(aq).
Energy (the lattice energy) is required to pull apart the oppositely charged ions in chromium chloride.
The heat of hydration is liberated energy when the separated ions (in this example chromium cations and chlorine anions) attract polar water molecules.
Because the lattice energy is higher than the heat of the hydration (endothermic reaction), we can conclude that bonds between ions are strong (the electrostatic attraction between oppositely charged ions).
Umm what kind of question is that but i think gain lol
(2) They tend to lose electrons easily when bonding is the correct answer.
All metals have either one, two, or three valence electrons. Therefore, they tend to lose these valence electrons in order to have eight valence electrons like noble gases do.
Hope this helps~
A force of attraction that holds atom together
<span>When atoms react they form a chemical bond which is defined as a force of attraction that holds atom together. A force of attraction is defined as a kind of force that draws two or more objects together regardless of distance. There are two major categories of forces of attraction, one is intramolecular and intermolecular. Intramolecular forces is the presence of forces in atoms internally. While intermolecular is the force by which the force that is existent in two or more elements. </span>