1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anygoal [31]
3 years ago
12

Lets assume, a represents the edge length (lattice constant) of a BCC unit cell and R represents the radius of the atom in the u

nit cell. Draw a BCC unit cell and show the atoms in the unit cell. Derive the relationship between the a and R.

Engineering
1 answer:
uranmaximum [27]3 years ago
7 0

Answer:

4\ R=\sqrt 3\ a

Explanation:

Given that

Lattice constant = a

Radius of unit cell cell =R

Atom is in BCC structure.

In BCC unit cell (Body centered cube)

1.Eight atoms at eight corner of cube which have 1/8 part in each cube.

2.One complete atom at the body center of the cube

So the total number of atoms in the BCC

 Z= 1/8 x 8 + 1 x 1

Z=2

In triangle ABD

AB^2=AD^2+BD^2

AB^2=a^2+a^2

AB=\sqrt 2\ a

In triangle ABC

AC^2=AB^2+BC^2

AC=4R

BC=a

AB=\sqrt 2\ a

So

16R^2=2a^2+a^2

4\ R=\sqrt 3\ a

So the relationship between lattice constant and radius of unit cell

4\ R=\sqrt 3\ a

You might be interested in
A steam power plant operates on an ideal reheat- regenerative Rankine cycle and has a net power output of 80 MW. Steam enters th
trasher [3.6K]

Answer:

flow(m) = 54.45 kg/s

thermal efficiency u = 44.48%

Explanation:

Given:

- P_1 = P_8 = 10 KPa

- P_2 = P_3 = P_6 = P_7 = 800 KPa

- P_4 = P_5 = 10,000 KPa

- T_5 = 550 C

- T_7 = 500 C

- Power Output P = 80 MW

Find:

-  The mass flow rate of steam through the boiler

-  The thermal efficiency of the cycle.

Solution:

State 1:

P_1 = 10 KPa , saturated liquid

h_1 = 192 KJ/kg

v_1 = 0.00101 m^3 / kg

State 2:

P_2 = 800 KPa , constant volume process work done:

h_2 = h_1 + v_1 * ( P_2 - P_1)

h_2 = 192 + 0.00101*(790) = 192.80 KJ/kg

State 3:

P_3 = 800 KPa , saturated liquid

h_3 = 721 KJ/kg

v_3 = 0.00111 m^3 / kg

State 4:

P_4 = 10,000 KPa , constant volume process work done:

h_4 = h_3 + v_3 * ( P_4 - P_3)

h_4 = 721 + 0.00111*(9200) = 731.21 KJ/kg

State 5:

P_5 = 10,000 KPa , T_5 = 550 C

h_5 = 3500 KJ/kg

s_5 = 6.760 KJ/kgK

State 6:

P_6 = 800 KPa , s_5 = s_6 = 6.760 KJ/kgK

h_6 = 2810 KJ/kg

State 7:

P_7 = 800 KPa , T_7 = 500 C

h_7 = 3480 KJ/kg

s_7 = 7.870 KJ/kgK

State 8:

P_8 = 10 KPa , s_8 = s_7 = 7.870 KJ/kgK

h_8 = 2490 KJ/kg

- Fraction of steam y = flow(m_6 / m_3).

- Use energy balance of steam bleed and cold feed-water:

                                        E_6 + E_2 = E_3

               flow(m_6)*h_6 + flow(m_2)*h_3 = flow(m_3)*h_3

                                    y*h_6 + (1-y)*h_3 = h_3

                                  y*2810 + (1-y)*192.8 = 721

Compute y:                          y = 0.2018

- Heat produced by the boiler q_b:

                             q_b = h_5 - h_4 +(1-y)*(h_7 - h_8)

                    q_b = 3500 -731.21 + ( 1 - 0.2018)*(3480 - 2810)

Compute q_b:               q_b = 3303.58 KJ/ kg

-Heat dissipated by the condenser q_c:

                                       q_c = (1-y)*(h_8 - h_1)

                                 q_c= ( 1 + 0.2018)*(2810 - 192)

Compute q_c:               q_c = 1834.26 KJ/ kg

- Net power output w_net:

                                     w_net = q_b - q_c

                                w_net = 3303.58 - 1834.26

                                    w_net = 1469.32 KJ/kg

- Given out put P = 80,000 KW

                                     flow(m) = P / w_net

compute flow(m)          flow(m) = 80,000 /1469.32 = 54.45 kg/s

- Thermal efficiency u:

                                     u = 1 - (q_c / q_b)

                                     u = 1 - (1834.26/3303.58)

                                     u = 44.48 %

5 0
3 years ago
An ideal Otto cycle has a compression ratio of 9.2 and uses air as the working fluid. At the beginning of the compression proces
Allushta [10]

Answer:

(a) The amount of heat transferred to the air, q_{out} is 215.5077 kJ/kg

(b) The net work output, W_{net}, is 308.07 kJ/kg

(c) The thermal efficiency is 58.8%

(d) The Mean Effective Pressure, MEP, is 393.209 kPa

Explanation:

(a) The assumptions made are;

c_p = 1.005 kJ/(kg·K), c_v = 0.718 kJ/(kg·K), R = 0.287 kJ/(kg·K),

Process 1 to 2 is isentropic compression, therefore;

T_{2}= T_{1}\left (\dfrac{v_{1}}{v_{2}}  \right )^{k-1} = 300.15\times 9.2^{0.4} = 729.21 \, K

From;

\dfrac{p_{1}\times v_{1}}{T_{1}} = \dfrac{p_{2}\times v_{2}}{T_{2} }

We have;

p_{2} = \dfrac{p_{1}\times v_{1}\times T_{2}}{T_{1} \times v_{2}} = \dfrac{98\times 9.2\times 729.21}{300.15 } = 2190.43 \, kPa

Process 2 to 3 is reversible constant volume heating, therefore;

\dfrac{p_3}{T_3} =\dfrac{p_2}{T_2}

p₃ = 2 × p₂ = 2 × 2190.43 = 4380.86 kPa

T_3 = \dfrac{p_3 \times T_2}{p_2} =\dfrac{4380.86  \times 729.21}{2190.43} = 1458.42 \, K

Process 3 to 4 is isentropic expansion, therefore;

T_{3}= T_{4}\left (\dfrac{v_{4}}{v_{3}}  \right )^{k-1}

1458.42= T_{4} \times \left (9.2 \right )^{0.4}

T_4 = \dfrac{1458.42}{(9.2)^{0.4}}  = 600.3 \, K

q_{out} = m \times c_v \times (T_4 - T_1) = 0.718  \times (600.3 - 300.15) = 215.5077 \, kJ/kg

The amount of heat transferred to the air, q_{out} = 215.5077 kJ/kg

(b) The net work output, W_{net}, is found as follows;

W_{net} = q_{in} - q_{out}

q_{in} = m \times c_v \times (T_3 - T_2) = 0.718  \times (1458.42 - 729.21) = 523.574 \, kJ/kg

\therefore W_{net} = 523.574 - 215.5077 = 308.07 \, kJ/kg

(c) The thermal efficiency is given by the relation;

\eta_{th} = \dfrac{W_{net}}{q_{in}} \times 100=  \dfrac{308.07}{523.574} \times 100= 58.8\%

(d) From the general gas equation, we have;

V_{1} = \dfrac{m\times R\times T_{1}}{p_{1}} = \dfrac{1\times 0.287\times 300.15}{98} =0.897\, m^{3}/kg

The Mean Effective Pressure, MEP, is given as follows;

MEP =\dfrac{W_{net}}{V_1 - V_2} = \dfrac{W_{net}}{V_1 \times (1- 1/r)}= \dfrac{308.07}{0.897\times (1- 1/9.2)} = 393.209 \, kPa

The Mean Effective Pressure, MEP = 393.209 kPa.

3 0
3 years ago
**Please Help ASAP**
RoseWind [281]

Answer:

look up the assignment number. its in the left side of the screen. its what i did when i had problems.

Explanation:

6 0
3 years ago
A spherical container made of steel has 20 ft outer diameter and wal thickness of 1/2 inch. Knowing the internal pressure is 50
anastassius [24]

Answer:

maximum normal stress = 5975 psi

maximum shear stress = 2987.50 psi

Explanation:

Given data

dia = 20 ft

wall thickness = 1/2 inch

internal pressure  = 50 psi

To find out

the maximum normal stress and the maximum shearing stress

Solution

By the Mohr's circle we will find out shear stress

first we calculate inner radius

i.e. r = (diameter/2) - t

r = (20 × 12 in )/2 - ( 1/2 )

r =  120 - 0.5 = 119.5 inch

Now we find out maximum normal stress by given formula

normal stress = ( internal pressure× r ) / 2 t

normal stress = ( 50×119.5 ) / 2 × 0.5

maximum normal stress = 5975 psi

and minimum normal stress is 0, due to very small radius

and maximum shear stress will be

shear stress = ( maximum normal stress - minimum normal stress ) / 2

shear stress = ( 5975- 0 ) / 2

maximum shear stress = 2987.50 psi

5 0
3 years ago
When was Lamborghini's Made<br> A.) 2004<br> B.) 1963<br> C.) 1923<br> D.) 1990
Serjik [45]

Answer:

1963

Explanation:

Sant'Agata Bolognese is a small comune in the Metropolitan City of Bologna, Emilia-Romagna, in the north of Italy. It is notable for being the headquarters of the luxury automobile manufacturer Automobili Lamborghini. It is named after Saint Agatha of Sicily.

7 0
3 years ago
Other questions:
  • Talc and graphite are two of the lowest minerals on the hardness scale. They are also described by terms like greasy or soapy. B
    14·1 answer
  • What is 29*69+98-78/36=
    9·2 answers
  • How many kg / day of NaOH must be added to neutralize a waste stream generated by an industry producing 90,800 kg / day of sulfu
    6·2 answers
  • A piston-cylinder apparatus has a piston of mass 2kg and diameterof
    12·1 answer
  • A company, studying the relation between job satisfaction and length of service of employees, classified employees into three le
    14·1 answer
  • Air pressure is higher above an airfoil.<br> true or false
    14·1 answer
  • Cite another example of information technology companies pushing the boundaries of privacy issues; apologizing, and then pushing
    9·1 answer
  • Which step in the engineering design phase is requiring concussion prevention from blows up to 40 mph an example of?
    6·1 answer
  • Example 12: Write an algorithm and draw a flowchart to calculate
    12·1 answer
  • What is the name of the part of the expressway where cars can both enter and exit?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!