1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
3 years ago
12

The boost converter of Fig. 6-8 has parameter Vs 20 V, D 0.6, R 12.5 , L 10 H, C 40 F, and the switching frequency is 200 kHz. (

a) Determine the output voltage. (b) Determine the average, maximum, and minimum inductor currents. (c) Determine the output voltage ripple. (d) Determine the average current in the diode. Assume ideal components.
Engineering
1 answer:
mr Goodwill [35]3 years ago
7 0

Answer:

a) the output voltage is 50 V

b)

- the average inductor current is 10 A

- the maximum inductor current is 13 A

- the maximum inductor current is 7 A

c) the output voltage ripple is 0.006 or 0.6%V₀

d) the average current in the diode under ideal components is 4 A

Explanation:

Given the data in the question;

a) the output voltage

V₀ = V_s/( 1 - D )

given that; V_s = 20 V, D = 0.6

we substitute

V₀ = 20 / ( 1 - 0.6 )

V₀ = 20 / 0.4

V₀ = 50 V

Therefore, the output voltage is 50 V

b)

- the average inductor current

I_L = V_s / ( 1 - D )²R

given that R = 12.5 Ω, V_s = 20 V, D = 0.6

we substitute

I_L = 20 / (( 1 - 0.6 )² × 12.5)

I_L = 20 / (( 0.4)² × 12.5)

I_L = 20 / ( 0.16 × 12.5 )

I_L = 20 / 2

I_L = 10 A

Therefore, the average inductor current is 10 A

- the maximum inductor current

I_{Lmax = [V_s / ( 1 - D )²R] + [ V

given that, R = 12.5 Ω, V_s = 20 V, D = 0.6, L = 10 μH, T = 1/200 kHz = 5 hz

we substitute

I_{Lmax = [20 / (( 1 - 0.6 )² × 12.5)] + [ (20 × 0.6 × 5) / (2 × 10) ]

I_{Lmax = [20 / 2 ] + [ 60 / 20 ]    

I_{Lmax = 10 + 3

I_{Lmax = 13 A

Therefore, the maximum inductor current is 13 A

- The minimum inductor current

I_{Lmax = [V_s / ( 1 - D )²R] - [ V

given that, R = 12.5 Ω, V_s = 20 V, D = 0.6, L = 10 μH, T = 1/200 kHz = 5 hz

we substitute

I_{Lmin = [20 / (( 1 - 0.6 )² × 12.5)] - [ (20 × 0.6 × 5) / (2 × 10) ]

I_{Lmin = [20 / 2 ] -[ 60 / 20 ]    

I_{Lmin = 10 - 3

I_{Lmin  = 7 A

Therefore, the maximum inductor current is 7 A

 

c)  the output voltage ripple

ΔV₀/V₀ = D/RCf

given that; R = 12.5 Ω, C = 40 μF = 40 × 10⁻⁶ F, D = 0.6, f = 200 Khz = 2 × 10⁵ Hz

we substitute

ΔV₀/V₀ = 0.6 / (12.5 × (40 × 10⁻⁶) × (2 × 10⁵) )

ΔV₀/V₀ = 0.6 / 100

ΔV₀/V₀ = 0.006 or 0.6%V₀

Therefore, the output voltage ripple is 0.006 or 0.6%V₀

d) the average current in the diode under ideal components;

under ideal components; diode current = output current

hence the diode current will be;

I_D = V₀/R

as V₀ = 50 V and R = 12.5 Ω

we substitute

I_D = 50 / 12.5

I_D = 4 A

Therefore, the average current in the diode under ideal components is 4 A

You might be interested in
Two streams of air enter a control volume: stream 1 enters at a rate of 0.05 kg / s at 300 kPa and 380 K, while stream 2 enters
alex41 [277]

Answer:

0.08kg/s

Explanation:

For this problem you must use 2 equations, the first is the continuity equation that indicates that all the mass flows that enter is equal to those that leave the system, there you have the first equation.

The second equation is obtained using the first law of thermodynamics that indicates that all the energies that enter a system are the same that come out, you must take into account the heat flows, work and mass flows of each state, as well as their enthalpies found with the temperature.

 

finally you use the two previous equations to make a system and find the mass flows

I attached procedure

5 0
3 years ago
Three point charges, each with q = 3 nC, are located at the corners of a triangle in the x-y plane, with one corner at the origi
lawyer [7]

Answer:

\vec F_{A} = -67500\,N\cdot (i + j)

Explanation:

The position of each point are the following:

A = (0\,m,0\,m,0\,m), B = (0.02\,m,0\,m,0\,m), C = (0\,m,0.02\,m,0\,m)

Since the three objects report charges with same sign, then, net force has a repulsive nature. The net force experimented by point charge A is:

\vec F_{A} = \vec F_{AB} + \vec F_{AC}

\vec F_{A} = -\frac{k\cdot q^{2}}{r_{AB}^{2}}\cdot i - \frac{k\cdot q^{2}}{r_{AC}^{2}}\cdot j

\vec F_{A} = - \frac{k\cdot q^{2}}{r^{2}} \cdot (i + j)

\vec F_{A} = -\frac{(9 \times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}} )\cdot (3\times 10^{-9}\,C)}{(0.02\,m)^{2}}\cdot (i + j)

\vec F_{A} = -67500\,N\cdot (i + j)

6 0
3 years ago
Who developed the process of blueprinting?
VikaD [51]
Answer: C.) John Herschel
3 0
3 years ago
50POINTS
maxonik [38]

Answer:

Ensure that all material and energy inputs and outputs are as inherently safe and benign as possible. Minimize the depletion of natural resources. Prevent waste. Develop and apply engineering solutions while being cognizant of local geography, aspirations, and cultures.Green engineering is the design, commercialization, and use of processes and products that minimize pollution, promote sustainability, and protect human health without sacrificing economic viability and efficiency.The goal of environmental engineering is to ensure that societal development and the use of water, land and air resources are sustainable. This goal is achieved by managing these resources so that environmental pollution and degradation is minimized.

Explanation:i helped

7 0
3 years ago
Read 2 more answers
A 14-lb crate is pulled up a frictionless 40° ramp with an initial velocity of v1=0.4 ft/s. It is pulled 0.3 ft from location #1
Morgarella [4.7K]

Answer:

3.25 ft/s

Explanation:

The crate is of =14-lb=m₁

The angle of inclination is = 40°=Ф

The initial velocity = 0.4 ft/s= v₁

Distance the crate will move is= 0.3 ft =d

The load pulling downwards is = 36 lb= m₂

Acceleration of the pulley, a= m₂g - m₁gsinФ / m₁+m₂ where g= 32.17 ft/s^2

a= 36*32.17 - 14*32.17*sin 40° / 14+36

a=17.37 ft/s^2

Apply the formula for final velocity

V₂²=V₁²+2ad

V₂²=0.4²+ 2*17.37*0.3

V₂²=10.582

V₂ =√10.582 = 3.25 ft/s

6 0
3 years ago
Other questions:
  • Name 3 ways in which robots have improved since the Ebola outbreak.
    11·1 answer
  • Two advantages of deforming steel at room temperature rather than at elevated temperatures are: (select 2 answers from the optio
    13·1 answer
  • Why do conditional statements always have only two outcomes?
    8·1 answer
  • Those in this career install, maintain, and repair electrical wiring,
    5·2 answers
  • james wants to qualify for icp are and licensure. Which degree would be required in order to qualify for a two year master of ar
    15·1 answer
  • What are the different branches of engineering involved in manufacturing a general-purpose elevator?
    6·1 answer
  • 14. Tires are rotated to
    12·2 answers
  • What substance do humans give to livestock to help them stay healthy?
    5·1 answer
  • Typical noise associated with failed cv joint​
    14·1 answer
  • What is a splitter gearbox​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!