1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Virty [35]
2 years ago
10

A sample of aluminum foil contains 9.20 x 1023 atoms. What is the mass of the foil?​

Chemistry
1 answer:
dmitriy555 [2]2 years ago
8 0

Answer:

b

Explanation:

answer b

You might be interested in
Which of the following elements is the most reactive?
Maksim231197 [3]
<span>the following element that is most reactive </span>would be  Fluorine
4 0
2 years ago
Read 2 more answers
What is the basic unit of energy?
Setler79 [48]

Answer:

Joule

Explanation:

Hope it helps!

3 0
3 years ago
Read 2 more answers
g A solution contains 100mM NaCl, 20mM CaCl2, and 20mM urea. We would say this solution is __________ compared to a 300 mOsM sol
ICE Princess25 [194]

Answer:

A solution contains 100mM NaCl, 20mM CaCl2, and 20mM urea. We would say this solution is hypotonic compared to a 300 mOsM solution and hypotonic compared to a cell with 300 mOsM (non-penetrating solutes) interior.

Explanation:

The osmolarity is calculated from the molar concentration of the active particles in the solution. We have a solution that is composed of NaCl, CaCl₂ and urea.

When they are dissolved in water, they dissociate into particles as follows:

NaCl → Na⁺ + Cl⁻  (2 particles per compound)

CaCl₂ → Ca²⁺ + 2 Cl⁻ (3 particles per compound)

urea: not dissociation (1 particle per compound)

Then, we have to calculate the osmolarity of the solution. We multiply the molarity of each compound by the number of particles produced by the compound in water:

Osm = (100 mM NaCl x 2) + (20 mM CaCl₂ x 3) + (20 mM urea x 1) = 280 mOsm

Compared with 300 mOsm, 280 mOsm has a lower osmolarity, so it is a hypotonic solution.

To compare with a cell's osmolarity, we have to consider only the non-penetrating solutes. Urea is considered a penetrating solute for mammalian cells. So, the osmolarity of non-penetrating solutes (NaCl  and CaCl₂) is calculated as:

Osm (non-penetrating solutes) = (100 mM NaCl x 2) + (20 mM CaCl₂ x 3) = 260 mOsm

Therefore, we have:

Compared to 300 mOsm solution ⇒ 280 mOsm solution is a hypotonic solution

Compared to a cell with 300 mOsm ⇒ 260 mOsm solution is hypotonic

4 0
2 years ago
If PbI2(s) is dissolved in 1.0MNaI(aq) , is the maximum possible concentration of Pb2+(aq) in the solution greater than, less th
fredd [130]

Answer:

\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}

Less than the concentration of Pb2+(aq) in the solution in part ( a )

Explanation:

From the question:

A)

We assume that s to be  the solubility of PbI₂.

The equation of the reaction is given as :

PbI₂(s) ⇌ Pb²⁺(aq) + 2I⁻(aq); Ksp = 7 × 10⁻⁹

 [Pb²⁺] =   s

Then [I⁻] = 2s

K_{sp} =\text{[Pb$^{2+}$][I$^{-}$]}^{2} = s\times (2s)^{2} =  4s^{3}\\s^{3} = \dfrac{K_{sp}}{4}\\\\s =\mathbf{ \sqrt [3]{\dfrac{K_{sp}}{4}}}\\\\\text{The mathematical expressionthat can be used to determine the value of  }\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}

B)

The Concentration of Pb²⁺  in water is calculated as :

\mathbf{s =\sqrt [3]{\dfrac{K_{sp}}{4}}}

\mathbf{s =\sqrt [3]{\dfrac{7*10^{-9}}{4}}}

\mathbf{s} =\sqrt[3]{1.75*10^{-9}}

\mathbf{s} =\mathbf{1.21*10^{-3}  \ mol/L }

The Concentration of Pb²⁺  in 1.0 mol·L⁻¹ NaI

\mathbf{PbCl{_2}}  \leftrightharpoons    \ \ \ \ \ \ \  \mathbf{Pb^{2+}}   \ \ \ \  \ +   \ \  \ \ \ \ \ \mathbf{2 I^-}

                             \ \ \ \ \ \ \  \ \   \ \  \ \ \ \ \ \ \  \mathbf0}   \ \ \ \  \ \ \ \ \ \   \ \ \ \ \ \mathbf{1.0}

                            \ \ \ \ \ \ \ \ \ \ \ \ \ \    \ \ \ \ \  \mathbf{+x}   \ \ \ \  \    \ \  \ \ \ \ \ \mathbf{+2x}

                            \ \ \ \ \ \ \ \ \ \ \ \ \ \    \ \ \ \ \  \mathbf{+x}   \ \ \ \  \    \ \  \ \ \ \ \ \mathbf{1.0+2x}

The equilibrium constant:

K_{sp} =[Pb^{2+}}][I^-]^2 \\ \\ K_{sp} = s*(1.0*2s)^2 =7*1.0^{-9} \\ \\ s = 7*10^{-9} \ \  m/L

It is now clear that maximum possible concentration of Pb²⁺ in the solution is less than that in the solution in part (A). This happens due to the  common ion effect. The added iodide ion forces the position of equilibrium to shift to the left, reducing the concentration of Pb²⁺.

3 0
3 years ago
What is the definition of thermal expansion
MissTica

Answer:

Thermal expansion is the tendency of matter to change its shape, area, and volume in response to a change in temperature.

Explanation:

8 0
3 years ago
Other questions:
  • Two different liquids are mixed together. Which observation indicates that an exothermic chemical reaction has taken place?
    12·2 answers
  • Answer questions 36, 37, and 38 For a “thanks” and more! (Please help me smarties:)
    15·1 answer
  • What did Ernest Rutherford s gold foil experiment demonstrate about atoms?
    14·1 answer
  • I need to know how to solve the equations.​
    6·1 answer
  • How would you make a 2.00L of 0. 500M sodium chloride solution. (assume you have a fully equipped lab with water); sketch, calc
    15·1 answer
  • photosynthesis is chemical change that happens in the plant what substance within the plant allows light energy to be captured
    11·1 answer
  • I am wondering how to find out the blood type of my grandson...my daughter is A+..father is in question...she is stressed to the
    6·1 answer
  • When bacteria reproduces asexually are the offspring uniform or diverse?
    5·2 answers
  • Which histone helps stabilize the solenoid structure?
    10·1 answer
  • Which scientist is credited with developing the fist scientific atomic theory
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!