To identify why a metal measurement was different in the experiments look for the variable that was different in the experiment and analyze how this change affected the results.
<h3>What is an experiment?</h3>
An experiment is a procedure that aims at probing or discovering something. For example, you can test if a plant grows faster/slower by using an experiment.
<h3>What causes different results in similar experiments?</h3>
The most common cause for this situation is that one of the factors or variables is slightly different. For example, if I add 50mL of water to a plant rather than 20mL of water every day this might cause different results.
Based on this, if the metal content was different you should analyze if any of the factors changed in this experiment and find out how this change affected the general results.
Note: This question is incomplete because there is limited information about the experiment; due to this, I answered it based on general knowledge.
Learn more about experiments in: brainly.com/question/13270830
The answers that fit the blanks are SMALL and LITTLE, respectively. The particles or molecules or fas are small which makes it loose and easily moves around, and these only exert little attraction for other gas particles. The answer for this would be option D.
Answer:
What happens is,that,when a river flows into the ocean it carries some land with it. This land is made up of rocks and soil, which contains minerals. One of these minerals is Salt.
Explanation:
Answer:
state of matter
Explanation:
so take water for example, water has a melting point and a boiling point right? So if it's below 0 degrees, then it's in its solid phase. If the temperature is above 0 degrees, then the water starts to melt into its liquid phase. Then when the temperature is above 100 degrees, water starts to boil and become its gas phase. This is the same for all substances. The only difference is different substances have different melting and boiling points so the numbers will be different depending on your substance. hope this helped!
The answer is 64.907 amu.
The atomic mass of an element is the average of the atomic masses of its isotopes. The relative abundance of isotopes must be taken into consideration, therefore:
atomic mass of copper = atomic mass of isotope 1 * abundance 1 + atomic mass of isotope 2 * abundance 2
We know:
atomic mass of copper = 63.546 amu
The atomic mass of isotope 1 is: 62.939 amu
The abundance of isotope 1 is: 69.17% = 0.6917
The atomic mass of isotope 1 is: x
The abundance of isotope 2: 100% - 69.17% = 30.83% = 0.3083
Thus:
63.546 amu = 62.939 amu * 0.6917 + x * 0.3083
63.546 <span>amu = 43.535 amu + 0.3083x
</span>⇒ 63.546 amu - 43.535 amu = 0.3083x
⇒ 20.011 amu = 0.3083x
⇒ x = 20.011 amu ÷ 0.3083 = 64.907 amu