1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nevsk [136]
3 years ago
5

Which particle has a mass of approximately 1 atomic mass unit?

Chemistry
1 answer:
labwork [276]3 years ago
7 0
The answer is D) a neutron.

When we say an atom's mass is, like 5 atomic mass units actually we are saying that the total number of the neutrons and protons in its nucleus is 5.

The mass of a neutron and a proton is each one atomic mass unit.

Mass of a neutron is approximately 1 atomic mass unit.
You might be interested in
Why does hydrochloric acid have a higher boiling point than diatomic fluorine? The stabilizing effect of dipole interactions in
il63 [147K]
The correct answer would be the fourth option. Hydrochloric acid has a higher boiling point than fluorine molecule because the former is a polar molecule which means that it has stronger bonds than fluorine which is a non-polar molecule. Stronger bonds require more energy to break these bonds.
6 0
3 years ago
Read 2 more answers
Why do atoms always contain the same number of electrons and protons?
katovenus [111]

Answer:

An electron is a negatively charged subatomic particle and a proton is a positively charged subatomic particle. Positive charge(s) attract negative charge(s) and vice versa. The proton and neutron stay together and attract one another to give the atom an overall charge of zero (neutral). Which is the charge of an atom. When there is an unequal number of protons and neutrons an ion is formed. If the number of protons are more than the electron, a positively charged ion called cation is formed. On the other hand, if the number of electrons are more than the protons a negatively charged ion called anion is formed.

8 0
3 years ago
Read 2 more answers
PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE H
Goryan [66]
100 m = 0.1 km
9.58 sec = 9.58/3600 = 0.00266 hr
Speed = 0.1/0.00266= 37.6 km/hr
Can you mark it brainliest?
4 0
3 years ago
Torrey's neighbor told her that a marble rolling down a hill increases in velocity as it rolls down, but does not increase in ki
ziro4ka [17]

Answer:

Torrey's neighbour is incorrect because increase in kinetic energy is proportional to velocity.  If the velocity increases so will the object's kinetic energy.  Because the mass is constant, if the velocity increases, so does the kinetic energy.

6 0
3 years ago
In each of the following sets of elements, which one will be least likely to gain or lose electrons?
klasskru [66]
1. The reactivity among the alkali metals increases as you go down the group due to the decrease in the effective nuclear charge from the increased shielding by the greater number of electrons. The greater the atomic number, the weaker the hold on the valence electron the nucleus has, and the more easily the element can lose the electron. Conversely, the lower the atomic number, the greater pull the nucleus has on the valence electron, and the less readily would the element be able to lose the electron (relatively speaking). Thus, in the first set comprising group I elements, sodium (Na) would be the least likely to lose its valence electron (and, for that matter, its core electrons).

2. The elements in this set are the group II alkaline earth metals, and they follow the same trend as the alkali metals. Of the elements here, beryllium (Be) would have the highest effective nuclear charge, and so it would be the least likely to lose its valence electrons. In fact, beryllium has a tendency not to lose (or gain) electrons, i.e., ionize, at all; it is unique among its congeners in that it tends to form covalent bonds.

3. While the alkali and alkaline earth metals would lose electrons to attain a noble gas configuration, the group VIIA halogens, as we have here, would need to gain a valence electron for an full octet. The trends in the group I and II elements are turned on their head for the halogens: The smaller the atomic number, the less shielding, and so the greater the pull by the nucleus to gain a valence electron. And as the atomic number increases (such as when you go down the group), the more shielding there is, the weaker the effective nuclear charge, and the lesser the tendency to gain a valence electron. Bromine (Br) has the largest atomic number among the halogens in this set, so an electron would feel the smallest pull from a bromine atom; bromine would thus be the least likely here to gain a valence electron.

4. The pattern for the elements in this set (the group VI chalcogens) generally follows that of the halogens. The greater the atomic number, the weaker the pull of the nucleus, and so the lesser the tendency to gain electrons. Tellurium (Te) has the highest atomic number among the elements in the set, and so it would be the least likely to gain electrons.
7 0
3 years ago
Other questions:
  • During science lab, Carl notices that when he adds water to his solid sample of anhydrous copper
    11·1 answer
  • Both kelp and diatoms are classified
    15·1 answer
  • Why can't a bullet with a tiny mass have the same momentum as a moving truck?
    9·1 answer
  • High up in the mountains there is very low pressure. What happens to the<br> temperature?
    10·1 answer
  • Calculate the number of moles in 136g of ammonia
    6·1 answer
  • Element X has two known isotopes. If 83% of the sample weighs 76 amu and the remaining 17% weighs 73.6 amu, what is the atomic m
    8·1 answer
  • 6. A container is filled with a mixture of carbon dioxide, oxygen, and nitrogen gases. The total pressure inside
    11·1 answer
  • What happens to the electropositive character of elements on moving from left to right along a period in a periodic table?​
    6·2 answers
  • List three properties of water that are related to hydrogen bonding
    12·1 answer
  • Select the structure that corresponds
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!