When ice melts, the physicals state changes from solid to liquid. The energy or the heat required (q) required to change a unit mass (m) of a substance from solid to liquid is known as the enthalpy or heat of fusion (ΔHf). The variables; q, m and ΔHf are related as:
q = m * ΔHf
the mass of ice m = 65 g
the heat of fusion of water at 0C = ΔHf = 334 J/g
Therefore: q = 65 g * 334 J/g = 21710 J
Now:
4.184 J = 1 cal
which implies that: 21710 J = 1 cal * 21710 J/4.184 J = 5188.8 cal
Hence the heat required is 5188.8 cal or 5.2 Kcal (approx)
Answer:
i rly did this for the extra points sry btw its d tho
Explanation:
Answer:
True
Explanation:
The molecule CH20 contains two single bonds and one double bond.
Answer:
The mass of the reactants compared with the mass of the products should be the same if the reactants are in stoichiometric amounts.
Explanation:
In this question, they ask about chemical reactions and the comparison of the mass of reactants and products. Firstly, it is necessary to introduce the mass conservation principle.
Mass conservation principle mentions that in a chemical reaction, the total mass of reactants is equal to the total mass of products (if the reaction is fully developed). It means mass is not created or destroyed, only transforms from reactants to products.
For example, the mass of sodium plus the mass of chlorine that reactswith the sodium equals the mass of the product sodium chloride.Because atoms are only rearranged in a chemical reaction, there mustbe the same number of sodium atoms and chlorine atoms in both thereactants and products.
Finally, we can conclude that The mass of the reactants compared with the mass of the products should be the same if the reactants are in stoichiometric amounts.