1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Burka [1]
3 years ago
7

A student drops two metallic objects into a 120-g steel container holding 150 g of water at 25°C. One object is a 206-g cube of

copper that is initially at 88°C, and the other is a chunk of aluminum that is initially at 5.0°C. To the surprise of the student, the water reaches a final temperature of 25°C, precisely where it started. What is the mass of the aluminum chunk?
Physics
1 answer:
spayn [35]3 years ago
3 0

Answer:

Mass of the aluminium chunk = 278.51 g

Explanation:

For an isolated system as given the energy lost and gains in the system will be zero therefore sum of all transfer of energy will be zero,as the temperature will also remain same

A specific heat formula is given as                  

Energy Change = Mass of liquid x Specific Heat Capacity x Change in temperature

                                       Q =  m×c×ΔT

                        Heat gain by aluminium + heat lost by copper  = 0    (1)

For Aluminium:

      Q = m\times0.897\frac{J}{g.k}\times(25-5)

      Q = m x 17.94 joule

For Copper:

Q= 206g\times0.385\frac{J}{g.k} \times(88-25)

       Q= 4996.53 Joule

from eq 1

     m x 17.94 = 4996.53

     mass of aluminium = \frac{4996.53}{17.94} g

    Mass of the aluminium chunk = 278.51 g

                         

You might be interested in
A. A land speed car can decelerate at 9.8m/s. How long does it take the car to come to a complete stop from a run of 885 km/hr (
Nimfa-mama [501]

Answer:

A. 25.08 s

B. 3082.53 m

C. 3×10⁵ m/s²

Explanation:

A. Determination of the time.

This can be obtained as illustrated below:

Acceleration (a) = –9.8 m/s²

Initial velocity (u) = 245.8 m/s

Final velocity (v) = 0 m/s

Time (t) =.?

v = u + at

0 = 245.8 + (–9.8 × t)

0 = 245.8 – 9.8t

Collect like terms

0 – 245.8 = – 9.8t

– 245.8 = – 9.8t

Divide both side by –9.8

t = –245.8 / –9.8

t = 25.08 s

Therefore, it will take 25.08 s for the car to come to a complete stop.

B. Determination of the distance travelled by the car.

Acceleration (a) = –9.8 m/s²

Initial velocity (u) = 245.8 m/s

Final velocity (v) = 0 m/s

Distance (s) =?

v² = u² + 2as

0² = 245.8² + (2 × –9.8 × s)

0 = 60417.64 – 19.6s

Collect like terms

0 – 60417.64 = – 19.6s

– 60417.64 = – 19.6s

Divide both side by –19.6

s = –60417.64 / –19.6

s = 3082.53 m

Thus, the car travelled a distance of 3082.53 m before stopping completely.

C. Determination of the acceleration of the object.

Initial velocity (u) = 0 m/s

Final velocity (v) = 600 m/s

Distance (s) = 0.6 m

Acceleration (a) =?

v² = u² + 2as

600² = 0² + (2 × a × 0.6)

360000 = 0 + 1.2a

360000 = 1.2a

Divide both side by 1.2

a = 360000 / 1.2

a = 300000 = 3×10⁵ m/s²

7 0
3 years ago
A particle with positive charge q = 9.61 10-19 C moves with a velocity v = (5î + 4ĵ − k) m/s through a region where both a unifo
user100 [1]

Answer:

\vec{F}=(1.537*10^{-17}\hat{i}-9.61*10^{-19}\hat{j}-2.883*10^{-18}\hat{k})N

Explanation:

The total force on the particle is given by

\vec{F}=q\vec{v}\ X\ \vec{B}+q\vec{E}

Then, by replacing we have:

q\vec{v}\ X \vec{B}=q[7\hat{k}-9\hat{j}-\hat{k}]\\\\q\vec{E}=q[5\hat{i}-\hat{j}-2\hat{k}]\\\\\vec{F}=(9.61*10^{-19}C)[(7+9)\hat{i}+(-9-1)\hat{j}+(-1-2)\hat{k}]\\\\\vec{F}=(1.537*10^{-17}\hat{i}-9.61*10^{-19}\hat{j}-2.883*10^{-18}\hat{k})N

where the cross product can be made with the determinant method.

Hope this helps!!

3 0
4 years ago
Read 2 more answers
Alguien que sepa de electromecánica porfavor
kkurt [141]
LAPA HDIDOSHSUWJWVWIHDHDOSSHSVWIME
8 0
3 years ago
Si el coeficiente de fricción cinética entre los neumáticos y el pavimento seco es de 0.80. ¿Cuál es la distancia mínima para de
vovangra [49]

Answer: 52.9 metros.

Explanation:

Podemos escribir la fuerza de fricción cinética como

F = μ*N

donde N es la fuerza normal entre el coche y el suelo, cuya magnitud es igual al peso en esta situación.

F = μ*m*g

donde m es la masa del coche y g es 9.8m/s^2

y sabemos que μ = 0.8

Por la segunda ley de Newton, sabemos que:

F = m*a

fuerza es igual a masa por aceleración.

a = F/m

entonces la aceleración causada por la fuerza de rozamiento es:

F = 0.8*m*g

a = F/m = (0.8*m*g)/m = 0.8*g.

Entonces ya encontramos la aceleración, hay que recordar que esta aceleración es en sentido opuesto a la sentido de movimiento, entonces podemos escribir la aceleración como:

a(t) = -0.8*g

Para la velocidad, podemos integrar sobre el tiempo para obtener.

v(t) = -0.8*g*t + v0

donde v0 es la velocidad inicial del auto = 28.7m/s

v(t) = -0.8*g*t + 28.8m/s

Ahora podemos encontrar el tiempo necesario para que la velocidad del coche sea cero, en ese momento, como deja de moverse, ya no tendremos rozamiento cinético, entonces no habrá aceleración y el coche se detendrá completamente.

v(t) = 0m/s = -0.8*9.8m/s^2*t + 28.8m/s

7.84m/s^2*t = 28.8m/s

                 t   = (28.8m/s)/(7.84m/s^2) = 3.63 segundos.

Ahora vamos a la ecuación de movimiento, donde asumimos que la posición inicial del coche es 0m, así que no tendremos constante de integración.

p(t) = -(1/2)*(0.8*9.8m/s^2)*t^2 + 28.8m/s*t

Ahora podemos evaluar la posición en t = 3.63 segundos, y esto nos dara la distancia que el coche se movio mientras frenaba.

p(3.63s) = -(1/2)*(0.8*9.8m/s^2)*(3.63s)^2 + 28.8m/s*(3.63s) = 52.9 metros.

6 0
3 years ago
Calculate the wavelength of each frequency of electromagnetic radiation: a. 100.2 MHz (typical frequency for FM radio broadcasti
Natalka [10]

Answer:

a). 100.2 MHz (typical frequency for FM radio broadcasting)

The wavelength of a frequency of 100.2 Mhz is 2.99m.

b. 1070 kHz (typical frequency for AM radio broadcasting) (assume four significant figures)

The wavelength of a frequency of 1070 khz is 280.3 m.

c. 835.6 MHz (common frequency used for cell phone communication)

The wavelength of a frequency of 835.6 Mhz is 0.35m.

Explanation:

The wavelength can be determined by the following equation:

c = \lambda \cdot \nu  (1)

Where c is the speed of light, \lambda is the wavelength and \nu is the frequency.  

Notice that since it is electromagnetic radiation, equation 1 can be used. Remember that light propagates in the form of an electromagnetic wave.

<em>a). 100.2 MHz (typical frequency for FM radio broadcasting)</em>

Then, \lambda can be isolated from equation 1:

\lambda = \frac{c}{\nu} (2)

since the value of c is 3x10^{8}m/s. It is necessary to express the frequency in units of hertz.

\nu = 100.2 MHz . \frac{1x10^{6}Hz}{1MHz} ⇒ 100200000Hz

But 1Hz = s^{-1}

\nu = 100200000s^{-1}

Finally, equation 2 can be used:

\lambda = \frac{3x10^{8}m/s}{100200000s^{-1}}

\lambda = 2.99 m

Hence, the wavelength of a frequency of 100.2 Mhz is 2.99m.

<em>b. 1070 kHz (typical frequency for AM radio broadcasting) (assume four significant figures)</em>

<em> </em>

\nu = 1070kHz . \frac{1000Hz}{1kHz} ⇒ 1070000Hz

But  1Hz = s^{-1}

\nu = 1070000s^{-1}

Finally, equation 2 can be used:

\lambda = \frac{3x10^{8}m/s}{1070000s^{-1}}

\lambda = 280.3 m

Hence, the wavelength of a frequency of 1070 khz is 280.3 m.

<em>c. 835.6 MHz (common frequency used for cell phone communication) </em>

\nu = 835.6MHz . \frac{1x10^{6}Hz}{1MHz} ⇒ 835600000Hz

But  1Hz = s^{-1}

\nu = 835600000s^{-1}

Finally, equation 2 can be used:

\lambda = \frac{3x10^{8}m/s}{835600000s^{-1}}

\lambda = 0.35 m

Hence, the wavelength of a frequency of 835.6 Mhz is 0.35m.

6 0
3 years ago
Other questions:
  • Choose the word that best completes each sentence.
    13·2 answers
  • How many grams of ice would have to melt to lower the temperature of 352 ml of water from 25?
    6·1 answer
  • What is the distance traveled per unit time called?
    10·1 answer
  • What is the number of protons in the nucleus of an element called?
    9·1 answer
  • A ball was dropped and had a mass of .2 kg and was falling with a force of 2 N, what was its acceleration?
    13·1 answer
  • The star Wolf 1061 has a parallax of 2.34 arc seconds, while the star Ross 652 has a parallax of 1.70 arc seconds. What can you
    6·1 answer
  • WILL UPVOTE! MULTIPLE CHOICE!
    14·1 answer
  • The drawing shows a top view of a door that is free to rotate about an axis of rotation that is perpendicular to the screen. Fin
    8·1 answer
  • 10 Kg box rest on 30 degree incline and begins to slide down.(a) What is the acceleration if no friction is present?(b) What is
    7·1 answer
  • How does wheel and axel work​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!