T<u>he direction of motion</u> of the person relative to the water is <u>16.7° north of east.</u>
Why?
We can solve the problem by applying the Pitagorean Theorem, where the first speed (to the north) and the second speed (to the east) corresponds to two legs of the right triangle formed with them. (north and east directions are perpendicular each other)
We can calculate the angle that give the direction using the following formula:

Now, substituting the given information we have:


Hence, we have that <u>the direction of motion</u> of the person relative to the water is 16.7° north of east.
Have a nice day!
Answer:
1.) U = 39.2 m/s
2.) t = 4s
Explanation: Given that the
height H = 78.4m
The projectile is fired vertically upwards under the acceleration due to gravity g = 9.8 m/s^2
Let's assume that the maximum height = 78.4m. And at maximum height, final velocity V = 0
Velocity of projections can be achieved by using the formula
V^2 = U^2 - 2gH
g will be negative as the object is moving against the gravity
0 = U^2 - 2 × 9.8 × 78.4
U^2 = 1536.64
U = sqrt( 1536.64 )
U = 39.2 m/s
The time it takes to reach its highest point can be calculated by using the formula;
V = U - gt
Where V = 0
Substitute U and t into the formula
0 = 39.2 - 9.8 × t
9.8t = 39.2
t = 39.2/9.8
t = 4 seconds.
I think option C is correct..hope it helps
Let say for every 5 s of time interval the speed will remain constant
so it is given as
v(mi/h) 16 21 23 26 33 30 28
now we have to convert the speed into ft/s as it is given that 1 mi/h = 5280/3600 ft/s
so here we will have
v(ft/s) 23.5 30.8 33.73 38.13 48.4 44 41.1
now for each interval of 5 s we will have to find the distance cover for above interval of time



so here it will cover 1298.1 ft distance in 30 s interval of time
Which best describes the transition from gas to liquid?
gas is @ higher energy state than liq. so the transition must remove energy. so ans is a. Energy must be removed because particles in liquid move more slowly.