Answer:
Neither.
Explanation:
When an electron is released from rest, in an uniform electric field, it will accelerate moving in a direction opposite to the field (as the field has the direction that it would take a positive test charge, and the electron carries a negative charge).
It will move towards a point with a higher potential, so its kinetic energy will increase, while its potential energy will decrease:
⇒ ΔK + ΔU = 0 ⇒ ΔK = -ΔU = - (-e*ΔV)
As ΔV>0, we conclude that the electric potential energy decreases while the kinetic energy increases in the same proportion, in order to energy be conserved, in absence of non-conservative forces.
Answer:
the kinetic energy lost due to friction is 22.5 J
Explanation:
Given;
mass of the block, m = 0.2 kg
initial velocity of the block, u = 25 m/s
final velocity of the block, v = 20 m/s
The kinetic energy lost due to friction is calculated as;

Therefore, the kinetic energy lost due to friction is 22.5 J
Answer:
. Doppler ultrasound is based on absorption of sound, and other
ultrasound technology is based on reflection.D.
Explanation:
The frictional force of an object is the product of the normal force and coefficient of kinetic friction. Here the frictional force acting on the object is 16.4 N.
<h3>What is frictional force?</h3>
Frictional force is a kind of force acting on a body to resist it from motion. Thus, the direction of the force will be in negative with the magnitude. Frictional force is the product of coefficient of friction and the normal force.
The normal force acting on the object of mass 4.2 Kg is N = mg
N = 4.2 Kg × 9.8 m/s² = 41.16 N
Frictional force = ц N
= 0.40 × 41.16 N
= 16.4 N.
Therefore, the frictional force acting between the surface of the object and the floor is 16.4 N
To find more on frictional force, refer here:
brainly.com/question/1714663
#SPJ1
Your question is incomplete. But your complete question probably was:
The coefficient of kinetic friction between an object and the surface upon which it is sliding is 0.40 the weight of the object is 4.2 kg. What is the frictional force of the object?
The apparent weight of a 1.1 g drop of water is 4.24084 N.
<h3>
What is Apparent Weight?</h3>
- According to physics, an object's perceived weight is a characteristic that describes how heavy it is. When the force of gravity acting on an object is not counterbalanced by a force of equal but opposite normality, the apparent weight of the object will differ from the actual weight of the thing.
- By definition, an object's weight is equal to the strength of the gravitational force pulling on it. It follows that even a "weightless" astronaut in low Earth orbit, with an apparent weight of zero, has almost the same weight that he would have if he were standing on the ground; this is because the gravitational pull of low Earth orbit and the ground are nearly equal.
Solution:
N = Speed of rotation = 1250 rpm
D = Diameter = 45 cm
r = Radius = 22.5 cm
M = Mass of drop = 1.1 g
Angular speed of the water = 


Apparent weight is given by


= 4.24084 N
Know more about Apparent weight brainly.com/question/14323035
#SPJ4
Question:
The spin cycle of a clothes washer extracts the water in clothing by greatly increasing the water's apparent weight so that it is efficiently squeezed through the clothes and out the holes in the drum. In a top loader's spin cycle, the 45-cm-diameter drum spins at 1250 rpm around a vertical axis. What is the apparent weight of a 1.1 g drop of water?