It’s basically that’s any system that’s closed to all transfers of matter and energy the mass of the system has to remain constant over time because they can’t change meaning you can’t add or remove from it
Hey, lovely! It's a pretty lengthy process but here is a pretty clear video on how to do it. Hope this helps ya!
https://www.khanacademy.org/science/chemistry/chemical-reactions-stoichiome/balancing-chemical-equat...
mole=10 x 10⁻³ : 46 g/mol = 2.17 x 10⁻⁴
The balanced reaction is as follows;
BiCl₂ + Na₂SO₄ --> 2NaCl + BiSO₄
this is a double displacement reaction
the oxidation number of Bi is +2 in both BiCl₂ and BiSO₄
oxidation number of Cl is -1 in both BiCl₂ and NaCl
oxidation number of Na is +1 in both Na₂SO₄ and NaCl
oxidation numbers of elements in SO₄²⁻ remains the same in both compounds.Therefore the oxidation state in any of the elements in the reaction doesn't change. Neither of the elements show an increase or decrease in the oxidation numbers .
Answer for this question is no element decreases its oxidation number.
<span>2.51 grams
You want to prepare 19.16 g of some solution which will have 13.1% of it's mass being sucrose. So we just need to perform some simple multiplication:
19.16g * 0.131 = 2.50996g
Rounding to 3 significant figures gives 2.51 g.</span>