Answer is: <span>No, because she did not stop adding base once the color changed.
</span>The endpoint<span> is the point at which the indicator changes colour in a colourimetric </span>titration and that is point when titration must stop or results are going to be wrong, because t<span>he </span><span>equivalence point of titration is not measured right.</span>
Answer:
0.013%
Yes, it does. The answer agrees with the statement.
Explanation:
Both conformers are in equilibrium, and it can be represented by the equilibrium equation K:
K = [twist-boat]/[chair]
The free energy between them can be calculated by:
ΔG° = -RTlnK
Where R is the gas constant (8.314 J/mol.K), and T is the temperature (25°C + 273 = 298 K).
ΔG° = 5.3 kcal/mol * 4.182 kJ/kcal = 22.165 kJ/mol = 22165 J/mol
22165 = -8.314*298*lnK
-2477.572lnK = 22165
lnK = -8.946
K = 
K = 1.30x10⁻⁴
[twist-boat]/[chair] = 1.30x10⁻⁴
[twist-boat] = 1.30x10⁻⁴[chair]
The percentage of the twist-boat conformer is:
[twist-boat]/([twist-boat] + [chair]) * 100%
1.30x10⁻⁴[chair]/(1.30x10⁻⁴[chair] + [chair]) *100%
0.013%
The statement about the conformers is that the chair conformer is more stable, and because of that is more present. So, the answer agrees with it.
Answer:examples for neutralization - treating indigestion,treatment for insect bites.hope it help you
Explanation:
Answer:
When two atomic orbitals come together to form two molecular orbitals, one molecular orbital will be lower in energy than the two separate atomic orbitals and one molecular orbital will be higher in energy than the separate atomic orbitals.
Explanation:
<em>Which of the following statements is TRUE? </em>
- <em>Electrons placed in antibonding orbitals stabilize the ion/molecule.</em> FALSE. Electrons in the antibonding orbitals destabilize the ion/molecule.
- <em>The total number of molecular orbitals formed doesn't always equal the number of atomic orbitals in the set.</em> FALSE. The total number of molecular orbitals is always equal to the number of atomic orbitals in the set.
- <em>When two atomic orbitals come together to form two molecular orbitals, one molecular orbital will be lower in energy than the two separate atomic orbitals and one molecular orbital will be higher in energy than the separate atomic orbitals.</em> TRUE. The orbital with lower energy will be the bonding orbital and the one with higher energy will be the antibonding orbital.
- <em>A bond order of 0 represents a stable chemical bond.</em> FALSE. A chemical bond is stable if the bond order is higher than zero.