The answer is CH3CH2CH2CHO
First identify which is being oxidized and reduced. In this case, the Mg is being oxidized and the Hg is being reduced.
Mg --> Mg+2
<span>Hg+2 --> Hg+1
</span>
Then you have to balance each half reaction first with electrons before adding them together in one equation

⇒

and

⇒
and then combine them together to form

⇒

It isn't necessary to keep the electrons but its essential to know how many there are in order to know how many are in the equation in order to calculate the reaction energy. Note: A<span>dd H+ and H2O to balance the H's and O's in acidic solution if needed.</span>
Answer: It decreases because nonvolatile aluminum and chloride ions now occupy some of the volume of the system.
Explanation:
Vapor pressure of a liquid is defined as the pressure exerted by the vapors in equilibrium with the liquid/solution at a particular temperature.
So, when a non-volatile solute is added to a solvent then its molecules align at the surface of liquid. As a result, less number of solvent molecules will escape from the solution. Thus, there will be decrease in vapors and thus the vapor pressure decrease.
The relative lowering of vapor pressure is directly proportional to the amount of dissolved solute.
3.
∆E = ∆m x c ² ∆m = E / c ² ∆m = 3,83•10^-12 / 3•10^8 ² ∆m = 4,256•10^-29 kg
Taking this class as well
It will likely give up its valence electron to the other compound, forming stable octets on each of the newly formed ions. These ions have opposing charges, and tend to form strong ionic lattices. A good example of this is NaCl, which contains Na+ ions that have given up their one valence electron and Cl- ions which have accepted that electron.
Hope this helps!