As long as they're both on the same planet, the greater mass always has the greater weight. In this question, Object-A has the greater mass, so it weighs more that Object-B does.
It would be funny because . I will not be good
Answer:
T_finalmix = 59.5 [°C].
Explanation:
In order to solve this problem, a thermal balance must be performed, where the heat is transferred from water to methanol, at the end the temperature of the water and methanol must be equal once the thermal balance is achieved.

where:

mwater = mass of the water = 0.4 [kg]
Cp_water = specific heat of the water = 4180 [J/kg*°C]
T_waterinitial = initial temperature of the water = 85 [°C]
T_finalmix = final temperature of the mix [°C]

Now replacing:
![0.4*4180*(85-T_{final})=0.4*2450*(T_{final}-16)\\142120-1672*T_{final}=980*T_{final}-15680\\157800=2652*T_{final}\\T_{final}=59.5[C]](https://tex.z-dn.net/?f=0.4%2A4180%2A%2885-T_%7Bfinal%7D%29%3D0.4%2A2450%2A%28T_%7Bfinal%7D-16%29%5C%5C142120-1672%2AT_%7Bfinal%7D%3D980%2AT_%7Bfinal%7D-15680%5C%5C157800%3D2652%2AT_%7Bfinal%7D%5C%5CT_%7Bfinal%7D%3D59.5%5BC%5D)
Answer:
21 miles
Explanation:
3 miles an hour for 7 hours
Its simply 7m*3m/hr=21 miles
-- The area under a velocity/time graph, between two points in time, is the difference in displacement during that period of time.
-- The area under a speed/time graph, between two points in time, is the distance covered during that period of time.