1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uysha [10]
2 years ago
5

Please help quick

Physics
1 answer:
Tatiana [17]2 years ago
6 0

Answer:

C is the right answer for the question

You might be interested in
One example of a physical change is
ycow [4]

Answer:

Mixing a milkshake

Explanation:

Becuse it’s physics becuse your using muscle and moving it and changing it by force.

7 0
3 years ago
A 6.5 kg rock thrown down from a 120m high cliff with initial velocity 18 m/s down. Calculate
Olegator [25]

Answer:

See the answers below.

Explanation:

In order to solve this problem we must use the principle of energy conservation. Which tells us that the energy of a body will always be the same regardless of where it is located. For this case we have two points, point A and point B. Point A is located at the top at 120 [m] and point B is in the middle of the cliff at 60 [m].

E_{A}=E_{B}

The important thing about this problem is to identify the types of energy at each point. Let's take the reference level of potential energy at a height of zero meters. That is, at this point the potential energy is zero.

So at point A we have potential energy and since a velocity of 18 [m/s] is printed, we additionally have kinetic energy.

E_{A}=E_{pot}+E_{kin}\\E_{A}=m*g*h+\frac{1}{2}*m*v^{2}

At Point B the rock is still moving downward, therefore we have kinetic energy and since it is 60 [m] with respect to the reference level we have potential energy.

E_{B}=m*g*h+\frac{1}{2}*m*v^{2}

Therefore we will have the following equation:

(6.5*9.81*120)+(0.5*6.5*18^{2} )=(6.5*9.81*60)+(0.5*6.5*v_{B}^{2} )\\3.25*v_{B}^{2} =4878.9\\v_{B}=\sqrt{1501.2}\\v_{B}=38.75[m/s]

The kinetic energy can be easily calculated by means of the kinetic energy equation.

KE_{B}=\frac{1}{2} *m*v_{B}^{2}\\KE_{B}=0.5*6.5*(38.75)^{2}\\KE_{B}=4878.9[J]

In order to calculate the velocity at the bottom of the cliff where the reference level of potential energy (potential energy equal to zero) is located, we must pose the same equation, with the exception that at the new point there is only kinetic energy.

E_{A}=E_{C}\\6.5*9.81*120+(0.5*9.81*18^{2} )=0.5*6.5*v_{C}^{2} \\v_{c}^{2} =\sqrt{2843.39}\\v_{c}=53.32[m/s]

5 0
3 years ago
Describe how thermal energy is transferred​
ikadub [295]

Answer:

Thermal energy typically flows from a warmer material to a cooler material. Generally, when thermal energy is transferred to a material, the motion of its particles speeds up and its temperature increases. There are three methods of thermal energy transfer: conduction, convection, and radiation.

Explanation:

ion know...

4 0
3 years ago
I NEED HELP PLEASE, THANKS! :)
Luden [163]

Answer:

The ball will be attracted to the negatively charged plate. It'll touch and pick up some electrons from the plate so that the ball becomes negatively charged. Immediately the ball is repelled by the negative plate and is attracted to the positive plate. The ball gives up electrons to the positive plate so that it is positively charged and suddenly attracts to the negative plate again, flies over to it and picks up enough electrons to be repulsed by negative plate and again to the positive plate and that continues.

8 0
3 years ago
A particle with charge − 2.74 × 10 − 6 C −2.74×10−6 C is released at rest in a region of constant, uniform electric field. Assum
s2008m [1.1K]

Answer:

241.7 s

Explanation:

We are given that

Charge of particle=q=-2.74\times 10^{-6} C

Kinetic energy of particle=K_E=6.65\times 10^{-10} J

Initial time=t_1=6.36 s

Final potential difference=V_2=0.351 V

We have to find the time t after that the particle is released and traveled through a potential difference 0.351 V.

We know that

qV=K.E

Using the formula

2.74\times 10^{-6}V_1=6.65\times 10^{-10} J

V_1=\frac{6.65\times 10^{-10}}{2.74\times 10^{-6}}=2.43\times 10^{-4} V

Initial voltage=V_1=2.43\times 10^{-4} V

\frac{\initial\;voltage}{final\;voltage}=(\frac{initial\;time}{final\;time})^2

Using the formula

\frac{V_1}{V_2}=(\frac{6.36}{t})^2

\frac{2.43\times 10^{-4}}{0.351}=\frac{(6.36)^2}{t^2}

t^2=\frac{(6.36)^2\times 0.351}{2.43\times 10^{-4}}

t=\sqrt{\frac{(6.36)^2\times 0.351}{2.43\times 10^{-4}}}

t=241.7 s

Hence, after 241.7 s the particle is released has it traveled through a potential difference of 0.351 V.

6 0
3 years ago
Other questions:
  • The distance, in feet, a moving object has traveled after t seconds is given by 2t/(4 + t). find the acceleration of the object
    15·1 answer
  • Las ovejas son animales sociales que seguirán a la oveja guía a cualquier lugar que decida ir. Pensando en esto, describa un mom
    9·1 answer
  • A ball is thrown vertically upward. What are its velocity and acceleration when it reaches its maximum altitude? What is its acc
    14·1 answer
  • A 2,294N force is applied to a 408kg mass. What is the acceleration of the mass?
    5·1 answer
  • A large number of very industrious people make a very long pole. It is 10.0 light years long! ( As they measure it. ) Soon a spa
    5·1 answer
  • Two resistors have resistances R(smaller) and R(larger), where R(smaller) < R(larger). When the resistors are connected in se
    12·1 answer
  • Can anyone solve this numerical<br><br><br><br><br><br> Answer is 2ohms
    5·1 answer
  • Foraging bees often move in straight lines away from and toward their hives. Suppose a bee starts at its hive and flies 680 m du
    10·1 answer
  • What happens to the particles in a substance when temperature rises
    6·1 answer
  • Pls help i will literally venmo you im not even kidding
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!