Intial velocity u=3m/s
final velocity v
2
=u
2
+2as=3
2
+(2×2×5)=29 ⟹v=5.3m/s
KE=
2
1
m(v
2
−u
2
)=
2
1
×2×((5.3)
2
−3
2
)=20J
Given,
Current (I) = 0.50A
Voltage (V) = 120 volts
Resistance (R) =?
We know that:-
Voltage (V) = Current (I) x Resistance (R)
→Resistance (R) = Voltage (V) / Current (I)
= 120/0.50
= 24Ω
∴ Resistance (R) = 24Ω
Spongy or the cancellous bone is the bone with lattice work structure
Given :
Height from which ball is dropped , h = 40 m .
Acceleration due to gravity , g= 10 m/s² .
Initial velocity , u = 0 m/s .
To Find :
Velocity when ball covered 20 m and velocity when it hit the ground .
Solution :
Now , height when ball covered 20 m distance is , 40 - 20 = 20 m .
By equation of motion :

Now , distance covered when body reaches ground is , 40 m .
Putting value h = 40 m in above equation , we get :

Hence , this is the required solution .
That type of model was called the raisin bread model, founded by JJ Thompson.