B represents the direction of the magnetic field around the wire
Explanation:
A wire carrying an electric current always produces a magnetic field around itself. The lines of the magnetic field produced by a current-carrying wires are concentric circles around the wire. The magnitude of the field is given by the formula:
where
is the vacuum permeability
I is the current in the wire
r is the distance from the wire
The direction of the field lines is given by the so-called right hand rule, shown in the figure. Basically, the thumb of the right hand is placed in the direction of the electric current, while the other fingers are "wrapped" around the thumb: the direction of the other fingers give the direction of the magnetic field lines.
Learn more about magnetic field:
brainly.com/question/3874443
brainly.com/question/4240735
#LearnwithBrainly
consider the motion along the X-direction
X = horizontal displacement = 80 m
= initial velocity along the x-direction = v Cos60
t = time of travel
using the equation
X = t
80 = (v Cos60) (t)
t = 160/v eq-1
consider the motion in vertical direction :
Y = vertical displacement = 20 m
= initial velocity in Y-direction = v Sin60
a = acceleration = - 9.8 m/s²
t = time of travel = 160/v
using the equation
Y = t + (0.5) a t²
20 = (v Sin60) (160/v) + (0.5) (- 9.8) (160/v)²
v = 32.5 m/s
The x- and y-coordinates are 9142.57 m and -304.425 m
<u>Explanation:</u>
As the motion of the shell is in a plane (two dimensional space) and the acceleration is that due to gravity which is vertically downward, we resolve initial velocity of the shell in horizontal and vertical directions. If the initial velocity of the shell is making angle with the horizontal, the horizontal component of initial velocity will be
As the acceleration of the shell is vertical having no horizontal component, the shell may be considered to move horizontally with constant velocity of and hence the horizontal distance covered (or the x coordinate of the shell with point of projection as origin) is given by
For motion with constant acceleration, we know
Along the horizontal, x-axis, we might write this as
Measuring distances relative to the firing point means
we know that,
or,
By applying the values, we get,
The acceleration of gravity is vertically downward and is , hence the vertical distance covered (or y coordinate of the shell) is given by the second equation of motion
we know, and , so,
y = 11701.8 - 4.9(2450.25)= 11701.8 - 12006.225 = - 304.425 m
Answer
given,
frequency from Police car= 1240 Hz
frequency of sound after return = 1275 Hz
Calculating the speed of the car = ?
Using Doppler's effect formula
Frequency received by the other car
..........(1)
u is the speed of sound = 340 m/s
v is the speed of the car
Frequency of the police car received
now, inserting the value of equation (1)
1.02822(340 - v) = 340 + v
2.02822 v = 340 x 0.028822
2.02822 v = 9.799
v = 4.83 m/s
hence, the speed of the car is equal to v = 4.83 m/s
Answer:
NE she is abusing the color pink thats off limist and she is creepy