Answer:
Kf > Ka = Kb > Kc > Kd > Ke
Explanation:
We can apply
E₀ = E₁
where
E₀: Mechanical energy at the beginning of the motion (top of the incline)
E₁: Mechanical energy at the end (bottom of the incline)
then
K₀ + U₀ = K₁ + U₁
If v₀ = 0 ⇒ K₀
and h₁ = 0 ⇒ U₁ = 0
we get
U₀ = K₁
U₀ = m*g*h₀ = K₁
we apply the same equation in each case
a) U₀ = K₁ = m*g*h₀ = 70 Kg*9.81 m/s²*8m = 5493.60 J
b) U₀ = K₁ = m*g*h₀ = 70 Kg*9.81 m/s²*8m = 5493.60 J
c) U₀ = K₁ = m*g*h₀ = 35 Kg*9.81 m/s²*4m = 1373.40 J
d) U₀ = K₁ = m*g*h₀ = 7 Kg*9.81 m/s²*16m = 1098.72 J
e) U₀ = K₁ = m*g*h₀ = 7 Kg*9.81 m/s²*4m = 274.68 J
f) U₀ = K₁ = m*g*h₀ = 105 Kg*9.81 m/s²*6m = 6180.30 J
finally, we can say that
Kf > Ka = Kb > Kc > Kd > Ke
Answer:
q₃ = -4.81 nC
Explanation:
We can use the Gauss Law here:
∅ = q/∈₀
where,
∅ = Net Flux = - 216 N.m²/C
q = total charge enclosed inside sphere = ?
∈₀ = permittivity of free space = 8.85 x 10⁻¹² C/N.m²
Therefore,
- 216 N.m²/C = q / 8.85 x 10⁻¹² C²/N.m²
q = (-216 N.m²/C)(8.85 x 10⁻¹² C²/N.m²)
q = - 1.91 nC
So, the total charge will be sum of all three charges:
q = q₁ + q₂ + q₃
- 1.91 nC = 1.74 nC + 1.16 nC + q₃
q₃ = - 1.91 nC - 1.74 nC - 1.16 nC
<u>q₃ = -4.81 nC</u>
Answer:
B) 12 m
Explanation:
Gravitational potential energy is:
PE = mgh
Given PE = 5997.6 J, and m = 51 kg:
5997.6 J = (51 kg) (9.8 m/s²) h
h = 12 m
Answer
Integral EdA = Q/εo =C*Vc(t)/εo = 3.5e-12*21/εo = 4.74 V∙m <----- A)
Vc(t) = 21(1-e^-t/RC) because an uncharged capacitor is modeled as a short.
ic(t) = (21/120)e^-t/RC -----> ic(0) = 21/120 = 0.175A <----- B)
Q(0.5ns) = CVc(0.5ns) = 2e-12*21*(1-e^-t/RC) = 30.7pC
30.7pC/εo = 3.47 V∙m <----- C)
ic(0.5ns) = 29.7ma <----- D)
The answer is A and E.
Hope this helps! :D