Answer:
a) FE = 0.764FG
b) a = 2.30 m/s^2
Explanation:
a) To compare the gravitational and electric force over the particle you calculate the following ratio:
(1)
FE: electric force
FG: gravitational force
q: charge of the particle = 1.6*10^-19 C
g: gravitational acceleration = 9.8 m/s^2
E: electric field = 103N/C
m: mass of the particle = 2.2*10^-15 g = 2.2*10^-18 kg
You replace the values of all parameters in the equation (1):

Then, the gravitational force is 0.764 times the electric force on the particle
b)
The acceleration of the particle is obtained by using the second Newton law:

you replace the values of all variables:

hence, the acceleration of the particle is 2.30m/s^2, the minus sign means that the particle moves downward.
South it is the same direction the car is already moving
Answer:
I matched the answers you requested above
<span>Efficiency is the
measure of how efficient a process is. It is used to assess the ability of a
process in avoiding waste energy, materials, money and time in doing a
desirable output. It is calculated as;
Efficiency = useful energy ouput / total energy input</span>
<span>
.742 = useful energy / 200 J
Useful energy = 148.4 J <-----------OPTION B</span>
Picking up a sheet of paper . . . work done with small force
Picking up a glass of water . . . work done with moderate force
Picking up a huge boulder . . . work done with a great tremendous force
=================================
Standing still . . .
Holding your tongue out as far as it will go . . .
Holding your arm over your head for 3 days . . .
Holding a huge boulder motionless over your head . . .
Pushing on a brick wall . . .
Pushing as hard as you can against a truck with the wheels locked . . .
. . . . . No work done at all, because the force doesn't move through a distance.
<u>Work done = (force) times (distance)</u>
If the force doesn't move, then the distance is zero, and the work done is zero.