Answer: C. the rod gains mass and the fur loses mass.
Explanation:Atomic particles have mass. The electron has a mass that is approximately 1/1836 that of the proton and with exchange exchange of charge this is also factored in. The movement of effect described above is known as the triboelectic charging process—charging by friction—which results in a transfer of electrons between the two objects when they are rubbed together. Plastic having a much greater affinity for electrons than animal fur pulls electrons from the atoms of fur, leaving both objects with an imbalance of charge. The plastic rod would have an excess of electrons and the fur has a shortage of electrons. Having an excess of electrons, the plastic is charged negatively and has more mass. In the same vein, the shortage of electrons on the fur leaves it with a positive charge and consequently with lesser mass.
Answer:
-414.96 N
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration


The force the ground exerts on the parachutist is -414.96 N
If the distance is shorter than 0.75 m then the acceleration will increase causing the force to increase
Answer:
a= 23.65 ft/s²
Explanation:
given
r= 14.34m
ω=3.65rad/s
Ф=Ф₀ + ωt
t = Ф - Ф₀/ω
= (98-0)×
/3.65
98°= 1.71042 rad
1.7104/3.65
t= 0.47 s
r₁(not given)
assuming r₁ =20 in
r₁ = r₀ + ut(uniform motion)
u = r₁ - r₀/t
r₀ = 14.34 in= 1.195 ft
r₁ = 20 in = 1.67 ft
= (1.667 - 1.195)/0.47
0.472/0.47
u= 1.00ft/s
acceleration at collar p
a=rω²
= 1.67 × 3.65²
a = 22.25ft/s²
acceleration of collar p related to the rod = 0
coriolis acceleration = 2ωu
= 2× 3.65×1 = 7.3 ft/s²
acceleration of collar p
= 22.5j + 0 + 7.3i
√(22.5² + 7.3²)
the magnitude of the acceleration of the collar P just as it reaches B in ft/s²
a= 23.65 ft/s²
Answer:
8.89288275 m/s
Explanation:
F = Tension = 54 N
= Linear density of string = 5.2 g/m
A = Amplitude = 2.5 cm
Wave velocity is given by

Frequency is given by

Angular frequency is given by

Maximum velocity of a particle is given by

The maximum velocity of a particle on the string is 8.89288275 m/s