Answer:
(a). The average speed is 51.83 m/s.
(b). The average velocity over one revolution is zero.
Explanation:
Given that,
Angular velocity = 110 rev/m
Radius = 4.50 m
(a). We need to calculate the average speed
Using formula of average speed



(b). The average velocity over one revolution is zero because the net displacement is zero in one revolution.
Hence, (a). The average speed is 51.83 m/s.
(b). The average velocity over one revolution is zero.
Answer:
Keq = 2k₃
Explanation:
We can solve this exercise using Newton's second one
F = m a
Where F is the eleatic force of the spring F = - k x
Since we have two springs, they are parallel or they are stretched the same distance by the object and the response force Fe is the same for the spring age due to having the same displacement
F + F = m a
k₃ x + k₃ x = m a
a = 2k₃ x / m
To find the effective force constant, suppose we change this spring to what creates the cuddly displacement
Keq = 2k₃
Answer:

#Where
is in meters and
in seconds.
Explanation:
Given that :
From
we have:

From
we have that:

Now,given that the initial value problem is given by:

Hence,the position of u at time t is given by
,
in meters,
in seconds.
ENERGY = POWER X TIME
=60 X 120=7200KWh
Answer:
a) a = 3.09 m/s²
b) aₓ = 2.60 m/s²
Explanation:
a) The magnitude of her acceleration can be calculated using the following equation:

<u>Where</u>:
: is the final speed = 8.89 m/s
: is the initial speed = 0 (since she starts from rest)
a: is the acceleration
d: is the distance = 12.8 m

Therefore, the magnitude of her acceleration is 3.09 m/s².
b) The component of her acceleration that is parallel to the ground is given by:

<u>Where</u>:
θ: is the angle respect to the ground = 32.6 °

Hence, the component of her acceleration that is parallel to the ground is 2.60 m/s².
I hope it helps you!